

Port of Newcastle Operations Pty Ltd

65 Denison Street Development - Carrington Geotechnical and Mine Subsidence Report

April 2021

Table of contents

1.	Intro	duction	1
	1.1	Limitations	1
2.	Inve	stigation methodology	3
	2.1	Preliminaries	3
	2.2	Consultation with Subsidence Advisory NSW	3
	2.3	Desktop studies	3
	2.4	Fieldwork	3
	2.5	Laboratory testing	5
3.	Site	setting and desktop findings	6
	3.1	Natural versus existing site setting	6
	3.2	Acid sulfate soils (ASS)	6
	3.3	Geology	6
	3.4	Coal mining	7
4.	Labo	pratory test results	8
	4.1	Geotechnical earthworks tests	8
	4.2	Soil aggressivity tests	9
	4.3	Acid sulfate soil test results	9
5.	Sub-	surface conditions	11
	5.1	Soil and general bedrock	11
	5.2	Fault, survey traverse and mine roof convergence	13
	5.3	Stratigraphic correlation between GBH5 and GBH6	15
	5.4	Subsidence fracturing and void in GBH5	16
6.	Pile	foundation discussion and recommendations	18
	6.1	Preliminary design parameters for pile foundations	18
	6.2	Pile foundations types	18
	6.3	Exposure classification for buried concrete and steel	28
7.	Pave	ements and earthworks	29
	7.1	Filling and pavement subgrade	29
	7.2	Management of acid sulfate soils	30
	7.3	Excavation conditions and groundwater levels	30
	7.4	Temporary excavation support	31
	7.5	Working platforms for piling rigs and cranes	31
8.	Mine	e subsidence	32
	8.1	Desktop study report (GHD 2020b) and update	32
	8.2	Estimated subsidence	33
	8.3	SA NSW Merit Assessment Policy and development options	36
	8.4	Mine subsidence recommendations	38
9.	Refe	erences	40

Table index

Table 2-1	Test location summary	4
Table 4-1	Particle size distribution test results	8
Table 4-2	Moisture Content, Standard Compaction and CBR test results	8
Table 4-3	Soil aggressivity test results	9
Table 4-4	Acid sulfate soil field screening results (Ahern et al, 2004)	9
Table 4-5	ASS Chromium Reducible Sulfur (Scr) suite test results	10
Table 5-1	Distribution of units encountered	12
Table 5-2	Mine roof spot levels (below high water mark)	14
Table 6-1	Preliminary geotechnical design parameters	18
Table 6-2	Potential advantages and limitations of helical screw piles	19
Table 6-3	Design parameters for helical piles	21
Table 6-4	Potential advantages and limitations of pre-cast driven piles	23
Table 6-5	Potential advantages and disadvantages of CFA piles	25
Table 6-6	Design parameters for CFA piles	26
Table 7-1	Thickness of organics encountered	29
Table 8-1	Comparison of anticipated mining conditions to encountered	32
Table 8-2	SA NSW Building Categories	37
Table 8-3	SA NSW Uncertainty Factor calculation	

Figure index

Figure 5-1	Extract from Figure 2 showing survey traverse and dashed pillars	15
Figure 5-2	Typical fracture pattern from longwall caving (orange annotation by GHD)	16
Figure 6-1	(a) Individual bearing method and (b) Cylindrical shear methods	20
Figure 6-2	Ultimate End Bearing pressure (fb) for helical screw pile in Unit 3	22
Figure 6-3	Ultimate end bearing pressure (fb) for CFA pile in Unit 3	27
Figure 6-4	Φg for percentage of dynamic load testing in accordance with AS2159	28
Figure 8-1	Modelled residual subsidence case (schematic not to scale)	34
Figure 8-2	Resultant surface subsidence profile (Δ of 0.1 m)	35
Figure 8-3	Resultant strain and tilt profile (Δ of 0.1 m)	35
Figure 8-4	Resultant surface subsidence profile (Δ of 0.2 m along fault)	36
Figure 8-5	Resultant strain and tilt profile (Δ of 0.2 m along fault)	36

Appendices

- Appendix A General Notes and standard sheets
- Appendix B Figures
- Appendix C Borehole logs and core photographs
- Appendix D Cone Penetrometer Test plots
- Appendix E Wireline logging / ATV reports
- Appendix F Laboratory test reports
- Appendix G GHD 2020b: Mine Subsidence Assessment report
- Appendix H Correspondence with Subsidence Advisory NSW

1. Introduction

This report presents the results of geotechnical assessment by GHD for a proposed four storey development at 46 Fitzroy Street / 65 Denison Street, Carrington (Lot 33, DP 1078910).

The proposed development is shown on the concept design drawings (Rainsford Architecture and Design, 2020). It comprises a four-storey reinforced concrete framed commercial office building on the western portion of the lot (fronting Fitzroy Street) and areas of on-grade carpark with 12 spaces along Fitzroy Street and 139 spaces on the eastern portion of the site (Denison Street). Additional carparking is provided on ground level of the building. Two vehicular access points are provided off Fitzroy Street with a third off Denison Street.

No basement is proposed with the finished ground level to be at about 2.6 m AHD. A stormwater detention tank is understood to be proposed on the eastern portion of the site with an invert of about 0.9 m AHD.

The work was commissioned by Port of Newcastle Operation Pty Ltd in response to the following GHD proposals:

- GHD 2020a: 46 Fitzroy St Carrington Development Options. Proposal for mine subsidence and contamination assessment Rev 1. 26 March 2020.
- GHD 2021a: 46 Fitzroy Street / 65 Denison Street, Carrington. Proposal for geotechnical assessment Rev 1. 2 February 2021.

This report firstly presents the investigation methodology and then the subsurface conditions encountered and various test results. Following that is an interpretation (model) of the subsurface conditions presented in terms of geotechnical units. Lastly, discussion and recommendations on pavement subgrade, building foundations, excavation conditions, acid sulfate soils and mine subsidence are provided. A separate report (GHD 2021b) has been prepared to address contamination and waste classification aspects. This includes findings from an additional 19 'push tube' boreholes to 2.1 m depth across the site.

With respect to mine subsidence, this report follows on from, and should be read in conjunction with, GHD report (GHD 2020b), a copy of which is included in Appendix G.

This report should also be read in conjunction with the General Notes provided in Appendix A.

1.1 Limitations

This report has been prepared by GHD for Port of Newcastle Operations Pty Ltd and may only be used and relied on by Port of Newcastle Operations Pty Ltd for the purpose agreed between GHD and the Port of Newcastle Operations Pty Ltd as set out in this report. GHD otherwise disclaims responsibility to any person other than Port of Newcastle Operations Pty Ltd arising in connection with this report. GHD also excludes implied warranties and conditions, to the extent legally permissible.

The services undertaken by GHD in connection with preparing this report were limited to those specifically detailed in the report and are subject to the scope limitations set out in the report.

The opinions, conclusions and any recommendations in this report are based on conditions encountered and information reviewed at the date of preparation of the report. GHD has no responsibility or obligation to update this report to account for events or changes occurring subsequent to the date that the report was prepared.

Where this report is relied on or used without obtaining this further advice from GHD, to the maximum extent permitted by law, GHD disclaims all liability and responsibility to any person in connection with, arising from or in respect of this report whether such liability arises in contract, tort (including negligence) or under statute.

The opinions, conclusions and any recommendations in this report are based on assumptions made by GHD described in this report. GHD disclaims liability arising from any of the assumptions being incorrect.

GHD has prepared this report on the basis of information provided by Port of Newcastle Operations Pty Ltd and others who provided information to GHD, which GHD has not independently verified or checked beyond the agreed scope of work. GHD does not accept liability in connection with such unverified information, including errors and omissions in the report which were caused by errors or omissions in that information.

Any excerpts of original mine survey plans or record tracings and any data derived from such original mine survey plans or record tracings must not be relied upon in any way by any person, including (without limitation) for the accuracy or completeness of mine workings, and are intended for indicative purposes only. The Department of Planning is not responsible or liable to any person for any loss or liability arising out of or in connection with use of any such excerpts or derived data.

2. Investigation methodology

2.1 Preliminaries

A Health, Safety and Environment (HSE) Plan, Job Safety and Environment Analysis (JSEA) and reviewed subcontractor Safe Work Method Statements (SWMS) were prepared and approved prior to conducting investigation fieldwork. All project site personnel were inducted in to the HSE Plan prior to commencing fieldwork by the GHD supervisor as well as completing the Port of Newcastle on-line inductions.

A 'Dial Before You Dig' services search was undertaken and reviewed prior to commencement of the fieldwork.

Proposed test locations were set out using a differential GPS by GHD. These locations were then checked for buried services by our sub-contracted service locator SureSearch. SureSearch reports were provided to Port of Newcastle.

2.2 Consultation with Subsidence Advisory NSW

A meeting with Subsidence Advisory NSW (SA NSW) was held on 4 May 2020 to discuss the project concept and subsidence matters. Also attending were representatives from Port of Newcastle, Monteath & Powys and GHD. Minutes of the meeting are included in Appendix H.

At that time the proposal being considered was two buildings, one three-storey office building and the other a two-storey industrial building. In order to provide advice on the need for subsurface site investigation, SA NSW advised they would need to review the desktop study report being prepared at that time. This is now GHD 2020b (included in Appendix G).

Following the meeting with SA NSW, the desktop study report (GHD 2020b) and preliminary cost estimates for the development were completed. The industrial building was not considered commercially viable and the proposal changed to the current four-storey commercial office building and on-grade carparking. Given the change to a four-storey building, Port of Newcastle decided to proceed with the subsurface geotechnical investigations presented herein.

2.3 Desktop studies

GHD 2020b presents the findings of a mine subsidence desktop study which includes information of relevance to geotechnical aspects such as bedrock geology and likely soil profile. This information was supplemented through review of the following:

- 1927 aerial photo obtained from Newcastle Regional Library on-line catalogue
- 1910 Map of the Country around Newcastle N.S.W. Lc Cpl A. Barrett (1910)
- 1983 -1995 History of Carrington. Transcript. Coulin (undated)
- Acid sulfate soil risk map. Accessed through eSPADE

The findings of the geotechnical desktop study are presented in Section 3 with references provided in Section 9.

2.4 Fieldwork

Geotechnical investigation fieldwork was undertaken between the 22nd of February and the 4th of March 2021 and comprised drilling of four 2 m deep boreholes (GBH1, GBH2, GBH7 and GBH8), two 16 m deep boreholes (GBH3 and GBH4), two 60+ m mine subsidence boreholes (GBH5 and GBH5) and GBH6) and five piezocone penetrometer tests (CPT1 to CPT5).

CPTs were conducted on the 12th of February 2021 and were undertaken by NEWSYD with a truck mounted rig from the University of Newcastle with a 20 tonne piezocone.

The boreholes were conducted with a truck mounted geotechnical drilling rig. They were initially advanced through the soil profile using 100 mm diameter solid flight augers. At about 2.5 m depth, wash boring methods were used to advance the boreholes down to the top of rock. Each borehole was extended into rock using HQTT diamond rock coring techniques. Whilst the logs of the boreholes should be referred to for details, briefly:

- In GBH5: interbedded siltstone and sandstone was encountered at 50.5 m and extended to 63.5 m where a void was intercepted which extended to 65 m depth. Due to the presence of the void, the borehole was discontinued.
- In GBH6: interbedded siltstone and sandstone was encountered at 48.6 m and extended to 66.1 m where the Borehole Seam coal was encountered and extended for 5 m before hitting the underlying Waratah Sandstone at 71.1 m.

Standard Penetration Tests (SPTs) were conducted in GBH3 and GBH4 to assist with subsurface characterisation and sampling. Tube samples, (U50s) were taken in GBH3, GBH4 and GBH6 at selected depths to target sampling of cohesive soil identified from review of CPT data.

GBH5 and GBH6 were logged with a wireline tool by GHD sub-contractor Groundsearch. The tool comprised Acoustic Televiewer (ATV), inclination, sonic calliper, deviation and natural gamma.

GBH5 and GBH6 were grouted to the surface. Given the void in GBH5 at 63.5 m depth, a "Van Ruth" plug was inserted in the borehole at 52 m depth prior to grouting above it.

Fieldwork was supervised on a full-time basis by GHD geotechnical team members and overseen by an experienced GHD Geotechnical Engineer. The GHD field supervisors were responsible for locating the CPTs, boreholes, boxing rock core, logging the encountered strata, directing in-situ testing and collecting representative samples for laboratory testing.

The CPT and borehole locations are shown on Figure 1 in Appendix B and listed with termination depths in Table 2-1. Ground surface levels at test locations were estimated using the site survey plan provided (Rainsford Architecture and Design, 2020).

Test location	Coordinates (MGA	42020)	Surface level (m	Termination depth (m)	
	Easting (m)	Northing (m)	AHD) ± 0.1 m		
GBH1	384,448.9	6,357,153.1	1.9	2.0	
GBH2	384,483.1	6,357,094.9	2.1	2.0	
GBH3	384,413.1	6,357,124.9	2.0	16.0	
GBH4	384,424.9	6,357,090.0	2.1	16.4	
GBH5	384,463.9	6,357,114.1	2.2	63.5	
GBH6	384,414.9	6,357,104.9	2.1	74.0	
GBH7	384,407.0	6,357,069.1	2.4	2.0	
GBH8	384,387.0	6,357,132.0	2.1	2.0	
CPT1	384,398.0	6,357,125.1	1.9	19.0	
CPT2	384,428.0	6,357,135.9	2.1	9.4	
CPT3	384,413.1	6,357,080.9	2.1	11.2	
CPT4	384,443.1	6,357,091.1	1.9	9.7	
CPT5	384,419.0	6,357,108.1	2.1	10.9	

Table 2-1 Test location summary

The borehole logs and core photograph are provided in Appendix C. The logs should be read in conjunction with the Standard Sheets provided in Appendix A, which explain the terms, abbreviations and symbols used together with the interpretations and limitations of the logging and testing procedures.

CPT reports are provided in Appendix D. Wireline logs are provided in Appendix E.

2.5 Laboratory testing

Selected soil samples were submitted to GHD's NATA registered laboratory for geotechnical testing and to a NATA accredited environmental laboratory for soil aggressivity and Acid Sulfate Soil (ASS) testing.

The soil aggressivity suite included pH, sulfate, electrical conductivity and chloride tested in a 1:5 soil to water ratio. The results allow consideration of durability requirements as required by Australian Standard AS2159-2009 *Piling – Design and installation*.

ASS testing comprised six field screening tests (undertaken by the environmental laboratory) and three Chromium Reducible Sulfur tests.

Point load strength index (rock) testing was undertaken at regular (typically 1.5 m) depth intervals on recovered rock core.

Geotechnical testing for soil classification and pavement design comprised the following:

- 4 field moisture content tests
- 4 particle Size Distribution tests
- 4 Standard Compaction tests
- 4 California Bearing Ratio tests

U50 tube samples were extruded in our Artarmon laboratory and each sample tested for undrained shear strength, photographed and described by a GHD laboratory geotechnician. The results of this work has been incorporated into the borehole logs.

The laboratory test results are summarised in Section 4. The laboratory report sheets are provided in Appendix F while the point load strength index tests are presented graphically on the borehole logs in Appendix C.

3.1 Natural versus existing site setting

The natural (pre-development) landscape in this area comprised low lying tidal mangrove swamps (Coulin, undated). In this estuarine environment, fine grained clay and silt "muds" would have been deposited and would likely contain organics and shells. The surface elevation at this time would have been about 0 to 0.5 m relative to Australian Height Datum (AHD).

The existing surface elevation varies between about 1.8 m AHD in the northeast corner to about 2.7 m AHD in the southwest corner. As such, it is expected that at least about 1.3 m to 2.7 m of fill thickness exists across the site with this fill underlain by fine grained estuarine soils of low strength. The reclamation of the site and placement of fill took place prior to 1910 and comprised "Sandy soil" (Barrett, 1910). Subsequent filling associated with site development has occurred with the ground surface now notably covered with topsoil or gravel.

The site is currently vacant although the concrete slab from the previous building remains on the eastern portion of the site. Remnants of drains and buried services are present on the western site of the site.

3.2 Acid sulfate soils (ASS)

ASS risk mapping (eSPADE) shows the site is located in an "X4: Disturbed terrain" region. The area west of Throsby Creek is mapped as "H2: High probability 1 - 3 m below ground. Based on this, it is highly probably that the natural estuarine and marine soils underling the fill are ASS.

3.3 Geology

Geology maps and historical mining records indicate the site is underlain by alluvial soils.

Bedrock is expected to be interbedded sandstone and siltstone with minor tuffaceous beds and carbonaceous laminations of the Lambton Formation. This includes the Borehole Seam at about 65 m depth and below this the Waratah Sandstone unit, the base (oldest unit) of the Newcastle Coal Measures.

The mine plan, Record Tracing RT579, indicates a Borehole Seam dip of 1 in 40 (1.4°) to the southeast

RT579 and another mine plan (M12137) show a fault passing through the Borehole Seam beneath the site with RT579 indicating a 6 foot (~1.8 m) displacement with the downside on the east as indicated by convention with the direction of the arrow. However, underground survey spot levels of the mine roof shown on these plans indicate the difference in roof level across the fault is 0.73 m with the downside on the west (GHD 2020b – Section 2.2).

As discussed in Section 5, the subsurface conditions encountered by the investigation presented herein are broadly consistent with the above expectations with rock encountered at 44 m to 49 m depth and the top of the Borehole Seam at about 66 m depth (GBH6).

Displacement across the fault is also discussed in Section 5 with a 1.8 m difference, downside on the west being our interpretation based on the mining records and stratigraphic correlation between GBH5 and GBH6.

3.4 Coal mining

The site is undermined by abandoned mine workings in the Borehole Seam at about 64 to 66 m depth (this investigation). Mining occurred between 1884 to 1904 at the Wickham and Bullock Island Colliery (GHD 2020b).

The subject site and surrounding area is within a gazetted mine subsidence district administered by Subsidence Advisory NSW (SA NSW) under the Coal Mine Subsidence Compensation Act 2017. SA NSW is an approval authority for surface improvements.

Reference should be made to GHD 2020b in Appendix G for detail of the mine subsidence desktop study.

4. Laboratory test results

4.1 Geotechnical earthworks tests

Moisture content, Standard Compaction, California Bearing Ratio (CBR) and particle size distribution test results are summarised in the below tables with brief material descriptions provided for each. Reference to the borehole logs in Appendix C should be made for a detailed description of these samples. The laboratory report sheets are provided in Appendix F.

Test	Sample	Material	Distribution by mass			
location	depth (m)		Clay/Silt (%) ¹	Sand (%)	Gravel (%)	
GBH1	0.85 – 1.5	FILL: SAND, fine to medium, dark grey	5	90	5	
GBH2	0.4 – 2.0	FILL: SAND, medium, pale grey	2	88	10	
GBH7	0.5 – 1.5	FILL: SAND, medium, brown	3	94	3	
GBH8	0.6 – 1.2	FILL: SAND, fine to medium, dark brown	7	85	8	

Table 4-1 Particle size distribution test results

1. Testing of fines comprised conventional sieve or wash sieve test methods. The clay and silt proportions were not determined individually and are combined – i.e. percent passing 75 micron sieve.

The results of the particle size distribution testing indicate the tested alluvial marine samples were fine to medium grained sand with 7% or less fines (silt and clay).

Table 4-2 Moisture Content, Standard Compaction and CBR test results

Sample Location	Sample Depth (m)	Material description	FMC (%)	OMC (%)	MDD (t/m ³)	CBR (%)	
GBH1	0.85 – 1.5	FILL: SAND, fine to medium, dark grey	9.5	11.5	1.79	16	
GBH2	0.4 - 2.0	FILL: SAND, medium, pale grey	9.2	13.0	1.74	30	
GBH7	0.5 – 1.5	FILL: SAND, medium, brown	9.0	13.0	1.67	11	
GBH8	0.6 – 1.2	FILL: SAND, fine to medium, dark brown	5.5	10.5	1.83	14	
FMC = Field	Moisture Conter	MDD = Standard Maximum Dry Density	MDD = Standard Maximum Dry Density				
CBR = Calif	ornia Bearing Ra	tio OMC = Standard Optimum Moisture Co	OMC = Standard Optimum Moisture Content				

The Standard Compaction tests indicate that the tested materials possessed field moisture contents well dry of optimum moisture content with standard maximum dry densities from 1.67 to 1.83 t/m³.

CBR test results ranged from 11% to 30% but were typically 11% to 16%.

4.2 Soil aggressivity tests

Soil aggressivity test results are summarised in the following table. The laboratory report sheets are provided in Appendix F.

Test location	Sample depth (m)	Material	FMC (%)	EC (µS/cm)	рН	SO ₄ (mg/kg)	CI (mg/kg)
GBH1	0.45	FILL: SAND, fine to medium, brown	15.6	91	8.6	10	10
GBH2	1.4	CH: Sandy CLAY, dark brown	19.6	413	8.1	870	30
GBH3	1.5 - 1.95	CI: Sandy CLAY, grey to dark grey	42.6	196	8.0	190	50
GBH3	3.0 - 3.45	SP: SAND, medium, brown to grey	21.5	98	8.9	120	20
GBH4	1.5 - 1.95	CI: Gravelly CLAY, brown to grey	27.9	240	8.4	130	20
GBH7	1.6	CI: CLAY, dark grey	33.4	232	8.7	300	190

Table 4-3 Soil aggressivity test results

FMC = Field Moisture Content; SO₄ = Sulfate; CI = Chloride; EC = Electrical conductivity; pH from 1:5 soil water ratio

Discussion relating to the soil aggressivity test results are provided in Section 6.1.

4.3 Acid sulfate soil test results

Acid sulfate soil (ASS) testing was undertaken on selected soil samples. Initially, screening tests were undertaken and following this, Chromium Reducible Sulfur test suites on selected samples. The laboratory report sheets are provided in Appendix F.

The screening results are summarised in Table 4-4.

Table 4-4 Acid sulfate soil field screening results (Ahern et al, 2004)

Test location	Sample depth (m)	Material	pH _F	рН _{Fox}	pH change	Reaction rate
GBH1	0.45	FILL: SAND, fine to medium, brown	8.9	6.1	2.8	2
GBH2	1.4	CH: Sandy CLAY, dark brown	8.0	5.7	2.3	2
GBH3	1.5 - 1.95	CI: Sandy CLAY, grey to dark grey	8.0	1.9	6.1	3
GBH3	3.0 - 3.45	SP: SAND, medium, brown to grey	8.0	4.6	3.4	1
GBH4	1.5 - 1.95	CI: Gravelly CLAY, brown to grey	8.7	5.5	3.2	2
GBH7	1.6	CI: CLAY, dark grey	8.8	2.2	6.6	4

Where: $pH_F = Field pH$ measurement (undertaken by laboratory) – 1:5 soil water ratio

pH_{Fox} = Field pH measurement after peroxide oxidation (undertaken by laboratory)

Oxidation reaction rate: 1 - slight, 2 - moderate, 3 - strong, 4 - extreme.

Bold values indicate potential acid sulfate soil

Based on the above ASS screening test results and considering the locations and depths of soils expected to be disturbed by the proposed development, the three samples listed in Table 4-5 were selected for Chromium Reducible Sulfur testing.

Table 4-5 ASS Chromium Reducible Sulfur (Scr) suite test results

Test location	Sample depth (m)	Material	Potential Acidity (as S) (mol H ⁺ /t)	Actual Acidity (mol H⁺/t)	Net Acidity (mol H ⁺ /t)
GBH1	0.45	FILL: SAND, fine to medium, brown	15	< 2	< 10
GBH3	1.5 - 1.95	CI: Sandy CLAY, grey to dark grey	537	< 2	283
GBH7	1.6	CI: CLAY, dark grey	814	< 2	470

Where:

Scr = Chromium Reducible Sulfur. Liming rate based on laboratory calculation

Bold values indicate exceedance of action criteria (18 mol H⁺/t) (National Acid Sulfate Soils Guidance, National acid sulfate soils identification and laboratory methods manual, Australian Government, 2018)

5.1 Soil and general bedrock

Reference should be made to the borehole logs in Appendix C for a more detailed description of the subsurface conditions encountered in the boreholes as well as the CPT plots in Appendix D and wireline logs in Appendix E.

In general terms the encountered conditions comprised uncontrolled fill to between 1.2 to 1.6 m depth (to 0.4 to 1.0 m AHD) underlain by estuarine clay/silt and marine sand layers to about -1.8 to -3.3 m AHD. A 10 to 13 m thick, dense to very dense sand unit was encountered beneath this with density generally increasing with depth. Lenses of clay / clayey sand within this sand layer resulted in distinct drops in density / consistency as shown on the CPT plots.

At about -12.8 to -13.8 m AHD beneath the proposed building, the above sand layer abruptly transitioned to stiffer estuarine clay that is likely of Lower Holocene or possibly Pleistocene age. This thick clay layer extends to residual clay soils and/or weathered bedrock.

Groundwater was encountered between 0.23 to 0.55 m AHD (1.6 to 1.7 m depth) in the CPT holes and between 0.58 and 1.1 m AHD (1.0 to 1.6 m depth) in the boreholes. The higher groundwater levels in the boreholes are likely due to higher recent rainfall and so may be higher than normal. However, even higher groundwater levels should be anticipated during prolonged and heavy rainfall.

For descriptive purposes, the encountered strata have been grouped into the following geotechnical units:

- Unit 1 Fill
- Unit 2a Holocene Estuarine Clay
- Unit 2b Holocene Marine Sand upper
- Unit 2c Holocene Estuarine Clay
- Unit 3 Holocene Marine sand lower •
- Unit 4 Lower Holocene? Clay •
- Unit 5 Permian Interbedded siltstone / sandstone with coal seams

The distribution of the above units as encountered is summarised in Table 5-1.

Test	Unit base level AHD and (thickness)									
location	Unit 1	Unit 2a	Unit 2b	Unit 2c	Unit 3	Unit 4	Unit 5			
GBH1	0.38 (1.5)	0.13 (0.25)	ne	ne	ne	ne	ne			
GBH2	0.85 (1.3)	0.65 (0.20)	ne	ne	ne	ne	ne			
GBH3	0.55 (1.5)	0.20 (0.35)	-1.35 (1.55)	-2.3 (0.9)	-13.5 (11.3)	ne	ne			
GBH4	0.55 (1.6)	0.20 (0.35)	-1.25 (1.45)	-2.1 (0.85)	-13.8 (11.7)	ne	ne			
GBH5	0.98 (1.2)	0.88 (0.1)	-1.0 (1.90)	?	-14.2 (?)	-46.9 (32.8)	loi			
GBH6	0.69 (1.4)	0.29 (0.4)	-1.1 (1.4)	-2.3 (1.2)	-13.6 (10.4)	-41.7 (28.1)	loi			
GBH7	0.59 (1.8)	ne	ne	ne	ne	ne	ne			
GBH8	0.36 (1.7)	ne	ne	ne	ne	ne	ne			
CPT1	0.43 (1.5)	0.3 (0.1)	-0.57 (0.9)	-1.8 (1.2)	-12.8 (11.0)	ne	ne			
CPT2	0.65 (1.5)	0.5 (0.2)	-0.45 (0.9)	-2.0 (1.5)	ne	ne	ne			
CPT3	0.65 (1.5)	0.1 (0.6)	-0.75 (0.8)	-2.3 (1.5)	ne	ne	ne			
CPT4	0.75 (1.2)	0.5 (0.3)	-0.55 (1.0)	-1.8 (1.2)	ne	ne	ne			
CPT5	0.66 (1.4)	0.3 (0.4)	-0.84 (1.1)	-2.3 (1.5)	ne	ne	ne			

Table 5-1 Distribution of units encountered

ne = not encountered; loi = limit of investigation

The pertinent aspects of the geotechnical units are described below.

Unit 1 – Fill

Typically SAND, fine to medium grained and often with shells and shell fragments and some gravel / gravelly layers. Variable surface layers, with gravel and topsoil typically less than 0.2 m thick.

CPT results indicate the sand is typically dense to very dense but variability is expected. That is: the characteristics and strength of uncontrolled fill will be variable.

Unit 2a – Holocene Estuarine Clay

This thin layer appears to be the natural ground surface. Typically it is a firm, high plasticity Sandy Clay and contains shell fragments and organic matter.

This unit has been confirmed through laboratory testing to be an Acid Sulfate Soil.

Unit 2b – Holocene Marine Sand – upper

Typically SAND, medium to coarse grained with shell fragments and trace of whole shells, Typically dense.

Unit 2c – Holocene Estuarine Clay

An interbedded unit of Sandy Clay, Silty Sand and Clayey Sand layers of firm consistency or medium density respectively.

Potentially Acid Sulfate Soil but not confirmed.

Unit 3 – Holocene Marine sand – lower

Typically SAND, medium to coarse grained with shell fragments. Increasing in density from medium dense to dense and then very dense to about -7 m AHD and remaining very dense.

With the exception of CPT1, all CPTs refused in this layer at between about -7 and -9 m AHD.

The base of Unit 3 appears to be relatively abrupt based on the CPT1 data.

Unit 4 – Lower Holocene Clay

This appears to be a relatively uniform stiff to hard (typically very stiff), high plasticity clay. From previous investigations in the Newcastle harbour area, it is known to be fissured.

Unit 5 – Permian siltstone / sandstone (Lambton Formation and Waratah Sandstone)

The interbedded siltstone and sandstone Lambton Formation is typically of medium to high strength and contains abundant carbonaceous laminations and frequent tuffaceous claystone bands. Several coal seams are known to exist but only the Borehole Seam was encountered.

The Borehole Seam is the lowest (oldest) seam in the Newcastle Coal Measures and is underlain by the Waratah Sandstone which was only encountered in GBH6.

5.2 Fault, survey traverse and mine roof convergence

5.2.1 Fault interpretation

As shown on Figure 2 and Figure 3 in Appendix B, mine plans RT579 and M12137 both show a fault passing beneath the site at mine level. RT579 shows the fault to have a displacement of 6 feet (~1.8 m) with the arrow pointing east, which is assumed to indicate the down throw side by convention. That is, the strata is lower on the eastern side of the fault. It would appear that this 1.8 m is probably the true fault displacement (on dip) rather than the vertical fault throw. For 1.8 m displacement and dip of 60°, the throw would be about 1.5 m for example.

The type of fault (normal or reverse) is not indicated on the plans. However, given its similar orientation (strike) to normal faults in the area shown on geology maps, short length on a regional scale and relatively minor disruption to the mine layout, it is judged to be a normal fault, dipping toward the northeast at 60° to 90°. At dip of 70° is shown on Figure 4 in Appendix B.

The faulted zone encountered in GBH5 between about 59.3 m to 60.5 m depth discussed in Section 5.3 is interpreted to be associated with the fault shown on the mine plans but not the same fault plane. It is likely to be a minor parallel normal fault and is also shown on Figure 4 with an assumed dip of 70°.

5.2.2 Survey roof levels and roof convergence

A comparison of spot levels from RT579 and M12137 where they are shown on the mine plans (red text on mine plans) at locations surrounding the site is reproduced below from GHD 2020b.

Spot level label on plans	Location	RT579	M12137	Difference
2a	western of site along the	221.84 feet (67.6 m)	221.8 feet (67.6 m)	No difference
483	"Engine Road" – west of fault	225.60 feet (68.8 m)	224.86 feet (68.5 m)	RT579 roof is 0.23 m lower
483a	south of site along "first left hand heading" – west of fault	227.05 feet (69.2 m)	-	RT579 roof west of fault at 483a is 0.73 m lower than M12137 roof cast of fault at
495	south of site along "first left hand heading" – east of fault	-	224.64 feet (68.5 m)	495 despite being only about 20 m away
Between 495 and 496	southeast of site	227.80 feet (69.4 m)	-	0.23 m lower than at 483a on RT579
496	hand heading" – east of fault		231.32 feet (70.5 m)	1.1 m lower than at between 495 and 496 on RT579

Table 5-2 Mine roof spot levels (below high water mark)

The above roof levels agree generally with a seam dip of 1 in 40 (1.4°) to the southeast between the winding shaft and fan shaft as indicated on RT579.

The roof level west of the fault would be expected to be 0.9 m to 1.8 m higher than the east side on account of the fault. However, there are also differences between RT579 and M12137 with RT579 indicating roof levels about 0.7 m lower (survey station 483a) on the west side of the fault. This is interpreted to be due to roof convergence that occurred between when the M12137 transverse and when the RT579 surveys were undertaken. Comparison to the top of seam level encountered in GBH6 to the levels shown on RT579 and M12137 has not been attempted as the available levels are too far from GBH6 to allow such a comparison reliably.

Plan M12137 shows a mine survey traverse, survey stations and an area of dashed pillars as reproduced in Figure 5-1. These features are discussed below.

5.2.3 Dashed pillars and roof convergence

The existence of a 'creep' (area of crushed pillars resulting in roof convergence) is indicated on M12137 by dashed pillars as shown on Figure 5-1. Similar areas of dashed pillars in other parts of the mine are shown on M12137 with survey traverse lines going around them also. Presumably because they were deemed unsafe to enter or were not accessible. This relevance of this is discussed further in Section 8.

Figure 5-1 Extract from Figure 2 showing survey traverse and dashed pillars

5.2.4 Summary of Borehole Seam levels

In summary, west of the fault the top of the Borehole Seam was naturally about 1.5 to 1.8 m higher (depending on inferred fault dip) than east of the fault. During mining, the coal pillars became over stressed and began to crush resulting in the mine roof and hence top of the Borehole Seam to converge by about 0.7 m west of the fault. Later, probably post mine closure, it is inferred that pillar crushing and roof convergence east of the fault likely lowered the overburden strata in that area also.

The top of void in GBH5 is at -61.5 m AHD (from the geophysics calliper log) and the top of the Borehole Seam at GBH6 is at -64.2 m AHD (from the geophysics gamma log). Taking into account the estimated 1.5 to 1.8 m difference in levels due to the fault and apparent stratigraphic dip, the void encountered in GBH5 is expected to be about 5 m above the top of the Borehole Seam as shown in Figure 4 in Appendix B.

5.3 Stratigraphic correlation between GBH5 and GBH6

To further assess the potential for subsidence east side of the fault, correlation of stratigraphic markers in the core has been made as shown in the photo comparisons included in Appendix C and Figure 4 in Appendix B.

GBH6 is interpreted to not be intersected by a fault while GBH5 is interpreted to be faulted between about 59.3 m to 60.5 m depth. The fault in GBH5 makes correlation to GBH6 difficult through and below this faulted zone and no reliable correlations were achieved.

The correlation exercise indicates a difference in level between stratigraphic markers of about 2.6 m increasing with depth to around 3.4 m (GBH6 higher). About 1 m difference is attributed to stratigraphic dip, leaving up to about 1.9 m difference due to the fault, variability in strata thickness, local variation in stratigraphic dip, logging error, displacement at other faults and/or roof convergence. It is not possible to reliably attribute how much of these various factors contribute to the additional difference in levels beyond the 1.5 to 1.8 m attributed to the fault.

5.4 Subsidence fracturing and void in GBH5

Evidence of subsidence induced fracturing was observed in both borehole cores. The subsidence fractures generally presented as high angled clean fractures, many of which are visible in the core photographs and have been noted on the borehole logs. Additionally, the presence of subsidence induced fractures was observed through difficult drilling conditions (short core runs and core loss) in both the overburden rock and crushed coal in GBH6.

The following observations are made:

- Subsidence induced fractures are present throughout the cored sections of both GBH5 and GBH6
- There is a greater concentration of fractures in the 2 to 4 m above the Borehole seam/void
- In GBH5, the fractures dip to the north east, east and south east
- In GBH6, the fracture dip was not generally observable from the acoustic televiewer log. The fracture at 65.4 m depth dips toward the south-south-west, another at 65.25 m depth dips toward the south-east.

The observed fractures are attributed to roof convergence and mine subsidence that has propagated through the overburden rock and to the ground surface. The direction of fracture dips generally toward the east suggests roof convergence propagated from west to east, similar to the pattern of cracking from longwall mining as shown in the figure below.

© Copyright, MSEC 2007

Figure 5-2 Typical fracture pattern from longwall caving (orange annotation by GHD)

The void encountered in GBH5 was logged by drilling observation to be 1.45 m high with the top of void at 63.55 m depth. However, the geophysical calliper measured the top of void at 63.7 m. The latter is more accurate and with the void depth of 65 m gives a void height of 1.3 m.

With the top of the void interpreted to be about 5 m above the Borehole Seam as discussed in Section 5.2 and Section 5.3, and the prevalence of subsidence induced fractures observed, the void is likely to be the crown of a caved section of roof that fell into the mine workings. Such a roof fall would be not surprising given the inferred minor fault intersecting GBH5.

On falling, the rock would have increased in volume (bulked). Typically, this is by 1.2 to 1.4 times but can be above and below this range. A 5 m thickness of rock would be expected to bulk to 6 to 7 m thickness leaving a crown void 4 to 5 m high. The much lesser void height of 1.3 m is attributed to roof convergence post roof fall which would have compressed the overburden strata.

An alternative explanation for the void is a large open subsidence fracture or bedding separation such as those labelled in Figure 5-2.

6.

Pile foundation discussion and recommendations

6.1 **Preliminary design parameters for pile foundations**

Preliminary geotechnical design parameters have been assessed for the soil units presented in Section 5 using the data obtained from the ground investigations. The parameters can be adopted in design approaches using the relevant design standards and appropriate strength reduction and load factors for limit state design.

Unit	Soil consistency / density	Unit weight (kN/m ³)	Measured values	Adopted undrained shear strength, S _u (kPa)	Adopted effective cohesion, c' (kPa)	Adopted effective friction angle, ¢'	Adopted drained Young's Modulus, E' (kPa)
1 - Fill	-	19		-	-	34	15
2a - Holocene Estuarine Clay	Soft to Firm	17	qc ~ 0.37 <i>–</i> 0.43 MPa	20	0	26	6
2b - Holocene Marine Sand - upper	Medium dense to dense	19	qc ~ 8 – 16 MPa	-	0	37	35
2c - Holocene Estuarine Clay	Soft to Firm	17	qc ~ 0.25 <i>–</i> 0.55 MPa	17	0	26	5
3 - Holocene Marine sand – lower (upper 1.5 m)	Medium dense to dense	20	SPT N ~ 12 - 14 qc ~ 10 - 1 MPa	-	0	38	40
3 - Holocene Marine sand – lower (below upper 1.5 m)	Very dense	21	SPT N ~ 42– refusal qc > 25 MPa	-	0	42	100
4 – Lower Holocene Clay	Stiff to Very Stiff	20	qc ~ 1.6 – 2.2 MPa	100	6	28	30

Table 6-1 Preliminary geotechnical design parameters

Note – Unit 3 has been divided into two units to reflect the increase in density with depth in the upper 1.5 m of Unit 3.

6.2 **Pile foundations types**

The type of pile foundation system will depend on the imposed load and performance criteria of the proposed structure. Helical steel screw piles, driven piles or Continuous Fight Auger (CFA) piles are options. These are discussed under the below sub-headings.

In all cases, founding within Unit 3 is recommended.

6.2.1 Helical steel screw piles

Potential advantages and limitations

Table 6-2 provides some of the potential advantages and limitations of helical steel screw piles.

Table 6-2 Potential advantages and limitations of helical screw piles

Advantages	Limitations
Rapid installation – Screw piles are installed using conventional construction equipment such as a track excavator with an appropriately sized low speed high torque hydraulic motor. Installation is less dependent on weather conditions. Shallow groundwater conditions generally have little impact on the installation as there is no requirement for excavation.	Limiting soil conditions – Screw piles are generally limited to installation in soils that have a maximum grain size less than about 60% of the pitch of the helices. For a typical pitch of 75 mm, this means a maximum grain size of about 40 to 45 mm or medium gravel. Screw-piles and helical anchors will generally not advance correctly in gravel and cobble deposits. Screw pile advancement through very dense sand (Unit 3) may not be possible and could limit the pile termination depth and hence capacities.
<i>Immediate load carrying capacity</i> – Screw piles can be loaded immediately after installation. There is no need to wait for concrete or grout to harden.	Equipment limitation - Proper installation of screw piles is essential to performance. The equipment used by the contractor should be selected to meet the expected soil conditions.
<i>Minimal site disturbance</i> – Screw piles cause less disturbance to the site compared to driven piles and bored piles. The installation typically produces no soil cuttings.	Structural limitations - There is a limit to the amount of torque that should be applied to the screw pile before the structural integrity is compromised. During installation, this limit should not be exceeded even though perhaps the equipment being used for installation has a higher torque capability.
<i>Installation monitoring</i> – The load capacity of the pile can be inferred during installation by using empirical relationship between installation torque and load capacity, although this does not properly account for potential punching failure into underlying weaker strata.	Durability – Due to their slender steel shafts and relatively thin helical bearing plates, corrosion protection measures must provide support for the design life of the structure.

Bearing capacity

The shaft frictional resistance (f_s) and the end bearing (f_b) of the helical steel screw piles should be derived from those of the founding Unit 3 layer only. The f_s and f_b of the overlying Holocene soils (including Units 2a, 2b and 2c) as well as the upper fill material (i.e. Unit 1) should not be considered for design purposes.

There are two methods for determining bearing capacity based on theoretical soil mechanics: *individual bearing* and *cylindrical shear*. If the spacing between helical bearing plates is very large, as in Figure 6-1(a), then each helix will act independently. The ultimate bearing capacity (P_u) of the helical pile in this case is the sum of the individual capacities of all the helical bearing plates plus adhesion along the shaft. This is called the "individual bearing" method and its P_u value can be calculated by:

$$P_{u} = f_{b1} \times A_{1} + f_{b2} \times A_{2} + \dots + f_{bn} \times A_{n} + f_{s} \times H \times \pi d$$

Sum of individual bearing capacities of all helical plates

Shaft resistance of pile shaft above top helical plate

Where:

 A_n is the area of the nth helical bearing plate;

H is the length of the helical pile shaft within Unit 3 above the top helix; and d is diameter of the shaft.

If the spacing between helical bearing plates is small, as in Figure 6-1(b), the plates will act as a group. The bearing capacity of the pile in this case is the combination of the bearing of the bottom plate and the side shear along the cylinder of soil encased between the helical plates. This is called the "cylindrical shear" method and its P_u value can be computed based on:

 $P_u = f_{b1} \times A_1 + f_s \times (n-1) \times s \times \pi D_{AVG} + f_s \times H \times \pi d$ End bearing Side shear of the soil of the helical

cylinder encapsulated between helical plates

Shaft resistance of pile shaft above top helical plate

Where:

 A_1 is the area of the bottom helix;

H is the length of shaft within Unit 3 above the top helix;

plate

d is diameter of the pile shaft;

 D_{AVG} is average helix diameter; and

 $(n-1) \times s$ is the length of soil between the helices.

The closeness of helical bearing plates is a relative term that depends on the geometry of the pile and surrounding soil conditions. It is not generally known in advance whether the helical bearing plates are close together or far apart. Therefore, it is recommended that the pile capacity should be determined using both methods and the least value adopted for design.

Recommended design parameters for helical pile

The recommended geotechnical design parameters recommended for helical pile are presented in Table 6-3. The helical plates should be installed into Unit 3 stratum with at least 5 times the helical plate diameter below the top of Unit 3 in order to mobilise the full end bearing capacity. However, the end bearing capacity could be reduced as the founding level approaches the underlying Unit 4. Figure 6-2 presents the recommended end bearing capacity profile within the Unit 3 layer for design.

Figure 6-1 (a) Individual bearing method and (b) Cylindrical shear methods

Table 6-3 Design parameters for helical piles

Unit	Soil Consistency	Ultimate shaft friction, f _s (kPa) ^{(1) (4)}	Ultimate end bearing, fь (MPa) ⁽¹⁾	Ultimate lateral yield pressure, p _y (MPa)	Young's modulus for vertical loading, E _v , (MPa)	Young's modulus for horizontal loading, Ен, (MPa)
1 - Fill	-	-	-	0 – 0.2 MPa in the upper 1.0 m, and 0.2 MPa thereafter	15	11
2a - Holocene Estuarine Clay	Soft to firm	-	-	0.15	6	4.5
2b - Holocene Marine Sand - upper	Medium dense to dense	-	-	0.4	35	26
2c - Holocene Estuarine Clay	Soft to firm	-	-	0.15	5	4
3 - Holocene Marine sand – lower (upper 1.5 m)	Medium dense to dense	55 ⁽²⁾	Based on effective stress method and Nq value of 85. See Figure 6-2	0.7	40	30
3 - Holocene Marine sand – lower (below upper 1.5 m)	Very dense	105 ⁽³⁾	Based on effective stress method and Nq value of 150. See Figure 6-2	1.3	100	75
4 - Lower Holocene Clay	Stiff to very stiff	50	450	0.9	30	22

Note -

⁽¹⁾ Ultimate shaft friction and end bearing values are not provided for Units 1, 2a, 2b & 2c since pile design should not rely on the skin friction above Unit 3.

 $^{(2)}$ Based on K_stan δ = 1.0; f_s = K_stan $\delta \times \sigma'_{\nu}$, where σ'_{ν} is the vertical effective stress.

 $^{(3)}$ Based on K_stan δ = 1.5; f_s = K_stan $\delta \times \sigma'_{\nu}$, where σ'_{ν} is the vertical effective stress.

⁽⁴⁾ For piles in tension, ultimate shaft friction can be taken as 0.8 x fs. Cone pull out failure should also be considered and the lesser capacity adopted.

Durability

Acid Sulfate Soils and aggressivity are discussed in Section 4.3, 6.3 and 0.

The upper 2 to 2.5 m section of helical piles is considered to be the most susceptible to corrosion resulting from exposure of acid sulfate soils. Corrosion protection measures should be considered in helical pile design as per AS2159.

Pile design and construction

All piles should be designed and constructed in accordance with AS2159.

Screw pile advancement through very dense sand (Unit 3) may not be possible and could limit the pile termination depth and hence capacities.

6.2.2 Pre-cast Driven Piles

Potential advantages and limitations

Pre-cast driven pile can be square, octagonal or cylindrical in shape. Table 6-4 outlines some advantages and limitations of pre-cast driven piles.

|--|

Advantages	Limitations
Piles are pre-fabricated off-site which allows for efficient installation once on site.	Advance planning is required for handling and driving, as well as the heavy equipment on site.
Driven piles displace and compact the soil which increases the geotechnical capacity of the pile. Whereas, other deep foundations such as bored piles tend to require the removal of soil which can lead to settlement and other structural problems.	Pre-stressed concrete piles must be adequately reinforced in order to withstand dynamic stress during driving. Pile advancement through very dense sand (Unit 3) may not be possible (driving refusal) and could limit pile termination depth and hence capacities.
They generally have superior structural strength to other forms of foundation. Their high lateral and bending resistance can result in the need for fewer piles on site.	It may not be possible to determine the exact length required and so splicing or cut- off techniques may be required which has time and cost implications.
Installation usually produces little spoil for removal and disposal.	Driven piles may not be suitable for compact sites, where sensitive structures / receivers in close proximity may be affected by the vibrations and noise caused by installation.

General design considerations for pre-cast driven piles

The load capacity of pre-cast driven piles is predominately derived from soil adhesion rather than end bearing. The capacity of a pile is estimated based on wave equation analyses. Piles should be driven with appropriate equipment to the required load capacity. It should be noted that during pile installation, the surrounding ground is displaced and noise and vibration occurs. In general, driven piles are not recommended in areas where sensitive structures are nearby.

The assessment of geotechnical capacity should be performed in two steps: an initial static analysis which is followed by a driveability analysis using wave equations. The above are subject to field verification with Pile Driving Analysis (PDA) during driving and Dynamic Load Testing.

Static analysis is performed based on the assessed shaft resistance and end bearing for a particular pile penetration depth. Depending on the quality of the available soil strength data and the variability of the soil properties, the reliability of the results obtained from such analysis will vary. Therefore, the calculated capacities are indirect estimates based on soil parameters estimated from the foundation investigation, and not based on the additional information provided by the installation process. Because of this inherent limitation, the pile founding level assessed from the static analysis should be considered as a nominal level only. Dynamic analysis is preferable as it provides a more direct verification of actual achieved capacity for each individual pile.

In essence, the static analysis provides indication on the founding stratum that would provide sufficient end bearing capacity to the pre-cast driven pile to meet the design load. The dynamic analysis (or driveability analysis) is then carried out to assess the required combination of driving set and hammer energy for construction. During construction and after achieving the minimum penetration depth as specified, the piles are driven further to achieve the required resistance.

All piles should be designed and constructed in accordance with AS2159.

Recommended design parameters for pre-cast driven pile (static analysis)

The recommended geotechnical design parameters for pre-cast driven piles and end bearing capacity profile within the Unit 3 layer are comparable to the values presented for helical piles. The design parameters presented in Table 6-3 and Figure 6-2 are applicable to static analyses for pre-cast driven piles.

Preliminary design parameters for driveability analysis

Driveability analysis using the wave equation approach should be undertaken as part of the design process to assess expected driving energy requirements and the associated tensile and compressive stresses generated in the pile during driving, which are to be provided to the Structural Engineer for structural capacity assessment. The driveability assessment can be undertaken using the commercially available computer program GRLWEAP (Wave Equation Analysis of Pile Driving).

The pile stresses generated during driving are related to the Static Resistance to Driving (SRD) that is actually present during driving. The actual SRD can be significantly different from the static soil resistance based on in-situ strength parameters. Notably, pore water pressure changes in the ground during pile installation tend to change the effective stress regime and therefore the resistance acting on the pile. Although empirical values are available for the selection of the gain-loss or capacity reduction factors, there is uncertainty in estimating the SRD. This affects both the energy to achieve penetration and driving stresses induced in the pile. For this reason continuous Pile Driving Monitoring (PDM) should be nominated.

The static resistance should be modified to consider potential loss of shaft resistance during driving, that is, the full loss of set-up during driving. The setup relates to soil and pore pressure response under dynamic loading, which are primarily evident within cohesive soils. Typical ranges of setup factors for initial assessment range from 1 for clean sands to 2 for clays. Actual setup factors in clay can exceed 10. With respect to the deeper gravel layers, it has been noted that driving records and dynamic testing for tubes driven through gravels has indicated that the fines content in these gravels (of inferred similar depositional history) is typically sufficient to develop a degree of setup. The following setup factors can be used for preliminary design:

- Unit 2a and 2c Holocene alluvium clayey soils: Setup = 2.0
- Unit 2b Holocene alluvial sand (upper): Setup =1.2
- Unit 3 Holocene Marine sand (lower): Setup = 1.2

Preliminary values for other driveability design parameters, including quake and damping, are given below:

- Unit 2a and 2c Holocene alluvium clayey soils: quake = 2.5 mm; damping =0.65 s/m
- Unit 2b Holocene alluvial sands (upper): quake = 2.5 mm; damping =0.3 s/m
- Unit 3 Holocene Marine sand (lower): quake = 2.5 mm; damping =0.3 s/m

6.2.3 Continuous Flight Auger (CFA) piles

Potential advantages and limitations

CFA piles are suitable to urban areas where noise and vibrations are a concern. They are constructed by drilling a continuous flight hollow stem auger into the ground to a specific depth. Once the pile toe level is achieved, concrete is pumped through the hollow stem to fill the cavity as the auger is extracted. A reinforcing cage, if specified, is then inserted into the fresh concrete by vibrating it into place after the auger has been withdrawn. Table 6-5 outlines some advantages and disadvantages of CFA piles.

Table 6-5 Potential advantages and disadvantages of CFA piles

Advantages	Limitations
Minimal levels of vibration	Typical pile length limit of about 12 m. Beyond that, there will be difficulty for lowering the reinforcing cage although depths of over 40 m have been achieved.
Lower noise levels generated by piling rig	Removal and disposal of spoil material generated from the pile.
Faster installation	Unlike bored piles where the drilled hole can be inspected and logged, it is not possible to verify visually the material encountered along the length of CFA pile during installation.
Self-supporting, generally without the need for casing for installation in sandy soils and below ground water	Strict quality control and thorough supervision is needed during installation.

General design considerations for CFA piles

The installation of CFA piles requires skilled operators to check stratification of the soil. Depending on the load and the dimension of the pile, an appropriate founding toe level needs to be defined to avoid punching failure since the recommended Unit 3 founding is underlain by Unit 4 clay.

The geotechnical design parameters recommended for CFA piles are presented in Table 6-6. Pile founding level should be at least 5 times pile diameter into Unit 3 to mobilise the full end bearing capacity and the capacity reduced linearly to the bottom of Unit 3 across the depth of 5 times pile diameter. The end bearing capacity profile in Unit 3 is presented in Figure 6-3.

All piles should be designed and constructed in accordance with AS2159.

Table 6-6 Design parameters for CFA piles

Unit	Soil Consistency	Ultimate shaft friction, f_{s} (kPa) $^{\left(1\right)\left(4\right)}$	Ultimate end bearing, f₅ (MPa) ⁽¹⁾	Ultimate lateral yield pressure, p _y (MPa)	Young's modulus for vertical loading, E _v , (MPa)	Young's modulus for horizontal loading, Ен, (MPa)
1 - Fill	-	-	-	0 – 0.2 MPa in the upper 1.0 m, and 0.2 MPa thereafter	15	11
2a - Holocene Estuarine Clay	Soft to firm	-	-	0.15	6	4.5
2b - Holocene Marine Sand - upper	Medium dense to dense	-	-	0.4	35	26
2c - Holocene Estuarine Clay	Soft to firm	-	-	0.15	5	4
3 - Holocene Marine sand – lower (upper 1.5 m)	Medium dense to dense	25 ⁽²⁾	Based on effective stress method and Nq value of 50. See Figure 6-3	0.7	40	30
3 - Holocene Marine sand – lower (below upper 1.5 m)	Very dense	60 ⁽³⁾	Based on effective stress method and Nq value of 60. See Figure 6-3	1.3	100	75
4 – Lower Holocene Clay	Stiff to very stiff	50	0.9	0.9	30	22

Note -

⁽¹⁾ Ultimate shaft friction and end bearing values are not provided for Units 1, 2a, 2b & 2c since pile design should not rely on skin friction above Unit 3.

 $^{(2)}$ Based on K_stan δ = 0.5;. f_s = K_stan $\delta \times \sigma'_{\nu}$, where σ'_{ν} is the vertical effective stress.

 $^{(3)}$ Based on K_stan $\delta~$ = 0.8; f_s = K_stan $\delta \times \sigma'_{\nu}$, where σ'_{ν} is the vertical effective stress.

 $^{\rm (4)}$ For piles in tension, ultimate shaft friction can be taken as 0.8 x $f_{\rm s}$

6.2.4 Geotechnical strength reduction factors

Basic geotechnical strength reduction factor ϕ_{gb}

The basic geotechnical strength reduction factor Φ_{gb} was assessed using an average risk rating (ARR) of 2.4 calculated using w_i and IRR_i values as outlined in Clause 4.3.2 of AS2159 for a medium redundancy system, $\Phi_{gb} = 0.60$.

In accordance with Clause 8.2.4 (c)(i) of AS2159, dynamic or static pile load testing is not mandatory where Φ_{gb} of greater than 0.4 is adopted and ARR is < 2.5. However, pile shafts integrity testing in accordance with Clauses 8.2.4 (c)(ii), 8.2.4 (c)(iii) and Table 8.2.4(B) of AS2159 is mandatory.

Geotechnical strength reduction factor Φ_g for piles without dynamic pile load testing

For pile foundations where pile load testing has not been undertaken, the adopted geotechnical reduction factor, Φ_{g} , is equal to the basic geotechnical strength reduction factor, Φ_{gb} . Thus:

$$\boldsymbol{\phi}_{g} = \boldsymbol{\phi}_{gb} = 0.60$$
 (no pile load testing assumed)

Geotechnical strength reduction factor Φ_g for piles with dynamic pile load testing

A Φ_g greater than the Φ_{gb} can be adopted if pile load testing (either by dynamic or static) is performed on production piles. Figure 6-4 shows Φ_g versus percentage of dynamically load tested piles in accordance with AS2159.

Figure 6-4 **Φ**g for percentage of dynamic load testing in accordance with AS2159

6.3 Exposure classification for buried concrete and steel

Exposure classifications for buried steel and concrete elements based on the test results were assessed in accordance with AS2159, *Piling – Design and Installation*. The laboratory test results correspond to the following exposure classifications for buried steel and concrete elements buried in sandy and gravel soils.

- Concrete (Ref. AS2159-2009 Table 6.4.2(C)):
 - Mild from aggressivity test results
- Steel (Ref. AS2159-2009 Table 6.5.2(C)):
 - Non-aggressive from aggressivity test results

As discussed in AS2159, Acid Sulfate Soils (ASS) should be considered in pile durability design. Based on the investigation results, potential ASS are present. Exposing them through excavation or dewatering would result in their oxidation and acidic ground conditions. However, as no significant excavation or permanent dewatering is proposed, it is likely the ASS will not be exposed to a significant extent.

7. Pavements and earthworks

7.1 Filling and pavement subgrade

Subgrade preparation and filling

Internal roads and carparks are expected to be constructed above the existing ground surface with a finished level of about 2.6 m AHD.

Preparation for site filling should comprise stripping to remove vegetation, topsoil, root affected or other potentially deleterious material. The thickness of organics encountered at various borehole locations are summarised in the below table.

Borehole location	Thickness (mm)	Push tube location	Thickness (mm) ⁽¹⁾
GBH1	100	BH01 to BH09	Concrete
GBH2	30	BH10	~ 150
GBH3	150	BH11	No photo
GBH4	120	BH12	~ 30
GBH5	Concrete	BH13	~ 30
GBH6	100	BH14	~ 30
GBH7	100	BH15	No photo
GBH8	50	BH16	0
		BH17	0
		BH18	~ 20
		BH19	~ 30

Table 7-1 Thickness of organics encountered

⁽¹⁾ Estimated from push tube photograph

Prior to filling, the stripped ground surface should be assessed by a geotechnical testing authority as defined in AS3798. Assessment should include test rolling under a 40 to 50 kg/cm static smooth drum load or approved equivalent. If over-wet subgrades exist, excessive deflection or deleterious materials are encountered, these materials should be over-excavated and replaced with granular select material with a CBR of 10% or greater, and compacted to 100% Standard Compaction (AS1289 5.1.1-2003). Test rolling of these areas should then be repeated. Should further excessive deflection under test rolling occur, a Geotechnical Engineer should be consulted and the cause of deflection investigated.

Compaction and test rolling with vibration should be avoided or the number of passes limited to avoid generation of excess pore pressures in the underlying Unit 2a clay. Such increase in pore pressures within this unit will temporarily reduce its strength and could result in bearing capacity failures under wheel or track loading. Such failed subgrade areas would likely require remediation by excavation and replacement.

The presence of abandoned services (e.g. water, sewer, stormwater pits and pipes) should also be considered in subgrade preparation as such subsurface voids may collapse during or following subgrade preparation and require remediation. Abandoned pits and pipes should be either excavated or filled with high mobility (flowable) cementitious grout or concrete.

Engineered Fill should be placed and compacted in accordance with AS 3798 in layers not exceeding 300 mm loose thickness and compacted to a minimum density ratio of 98% Standard Compaction, in accordance with AS1289 5.1.1 or equivalent. Clay fill should be placed and maintained at -3% to +1% of standard optimum moisture content (SOMC).

The top 300 mm of subgrade (placed or in-situ) should be compacted to a minimum dry density ratio of 100% Standard Compaction (AS1289 5.1.1-2003) at a moisture content in the range of -3% to +1% of the SOMC.

Earthworks and compaction testing should be carried out in accordance with AS3798. It is recommended that 'Level 1' inspection and testing be undertaken during construction by a geotechnical testing authority. 'Level 1' is defined in AS3798 and requires full time supervision during material placement and compaction.

Subgrade design CBR

Pavements should be designed for a suitable subgrade CBR which takes into account the thickness and CBR of the various subgrade layers to a depth of 1 m below the underside of the sub-base as well as the anticipated variability of the subgrade materials.

For subgrade prepared as described above, a design subgrade CBR of 10 % is recommended, taking into consideration the possible variability of Unit 1 and avoiding overstressing the sand subgrade (resulting in its failure) by provide an adequate thickness of granular pavement over it.

It should be noted that the boreholes and CPTs across the site provide an indication of the likely subsurface materials. However, the characteristics of subgrade between these locations is unknown. The exposed subgrade should be inspected by a geotechnical testing authority to confirm the uniformity of the subgrade as discussed in the above section.

Pavement drainage

Pavement designs typically assume that adequate surface and subsurface drainage is provided. Guidance on subsurface drainage design is provided in Austroads 2009, *Guide to Pavement Technology – Part 10: Subsurface Drainage.*

7.2 Management of acid sulfate soils

Based on the ASS Chromium Reducible Sulfur testing, Unit 2a soils are ASS and disturbance would require an ASS management plan. Should this material be reused on site, further testing will be required. A preliminary lime dosing rate of 35 kg CaCO₃/t is recommended based on the available ASS test results.

Excavation of Unit 2a soils, or lowering of groundwater to expose Unit 2a soils, is likely to disturb ASS. Further investigation and assessment would be required to assess the need for an ASS management plan.

7.3 Excavation conditions and groundwater levels

Based on the conditions encountered and with the exception of the existing concrete slab and any other remnant footings, it is anticipated that excavation will be achievable using conventional earthmoving machinery such as backhoes and tracked excavators.

Groundwater was encountered between 0.23 to 0.55 m AHD (1.6 to 1.7 m depth) in the CPT holes and between 0.58 and 1.1 m AHD (1.0 to 1.6 m depth) in the boreholes. The higher groundwater levels in the boreholes are likely due to recent rainfall and so may be higher than normal. However, even higher groundwater levels again should be anticipated during prolonged and heavy rainfall.

Depending on the depth of trenching required, groundwater inflow may occur and require management. The extent of inflow and inflow rates will be dependent on the groundwater levels during excavation, permeability of the surrounding ground as well as the width and depth of excavation.

Due to the destabilising effects of groundwater flowing into an excavation through sandy soils, a spearpoint dewatering system is recommended for excavation below groundwater to temporarily lower the water table such that groundwater does not flow into excavations. Such a dewatering system should take into consideration the potential exposure of acid sulfate soils in Unit 2a.

7.4 Temporary excavation support

Temporary excavations should satisfy the requirements of relevant workplace health and safety legislation, including the Safe Work Australia, Excavation Work – Code of Practice, October 2013 or latest version. We recommend that no personnel should enter any excavation deeper than 1.0 m that is unsupported.

Excavation shoring should be designed by a qualified geotechnical and/or structural engineer or, in the case of pre-fabricated shoring boxes, be designed, manufactured and installed in accordance with the relevant Australian Standards and manufactures recommendations. The condition of shoring should be inspected as part of daily pre-work inspections as a minimum frequency and risks assessed and mitigated accordingly.

Trench support may be designed on the basis of a bulk soil unit weight of 19 kN/m³ (nonsubmerged) and should take into consideration potential hydrostatic forces. Appropriate design earth pressures should be derived from the anticipated ground conditions, surcharge loading, proposed retention system, and allowable wall deflection.

The "stand-up" time of trenches with inflow of water may be too short to allow time to install shoring boxes with trench collapse potentially occurring within less than a minute. Where a spearpoint dewatering system is used to prevent water inflow into excavations or where no water inflow occurs, stand-up time is expected to be adequate for shoring box installation but excavation collapse may still occur with little warning. Appropriate measures should be put in place to protect structures and infrastructure within 2 m horizontally of an excavation crest, assuming excavations are no deeper than 2 m.

The potential for dewatering induced settlement should also be considered in the design of a dewatering system.

7.5 Working platforms for piling rigs and cranes

The adequacy of the site to support the proposed construction plant / vehicles, such as piling rigs and cranes should be assessed and managed by the Principal Contractor and should include consideration of:

- Loading conditions (i.e. track pressure distributions, outrigger loads / eccentricity and outrigger pad transfer of load to the ground) for various load cases.
- Ground conditions beneath the proposed working platforms / plant operation areas, including potential changes in groundwater level or reduction in subgrade strength resulting from potential over compaction and associated elevation of pore water pressures and bearing capacity failures.
- Presence of existing or past excavations, slopes, buried services or voids that could reduce bearing capacity.

The data presented in this report can be used by the Principal Contractor to assist in the assessment of ground conditions and bearing capacity. Given the possible variability of Unit 1, the Principal Contractor should supplement this data in areas such as outrigger pad locations and piling rig working platforms with additional subsurface investigations and geotechnical engineering assessment. The use of hand augers and dynamic cone penetrometer testing could be considered as a means of supplementing subsurface investigation data.

8. Mine subsidence

8.1 Desktop study report (GHD 2020b) and update

GHD 2020b, included in Appendix G, provides the findings of a desktop study and includes a summary of mining history, terminology and anticipated mining conditions based on historical documents as referenced. The report also provides an estimate of subsidence parameters (strain, tilt and curvature) for the case of an assumed 0.6 m ground surface maximum subsidence and discussion on four development options with respect to Subsidence Advisory NSW (SA NSW) Merit Assessment Policy.

Broadly, the ground conditions anticipated from the desktop study are consistent with the encountered ground conditions as discussed in Section 3.3 and Section 5 of this report. The notable difference being that the ground beneath the site is now interpreted to have subsided as a result of Borehole Seam coal pillar crushing.

Table 8-1 provides a comparison of mine subsidence related expectations included in the desktop study report to encountered and interpreted conditions as a result of boreholes GBH5 and GBH6 presented herein.

Anticipated as reported in GHD 2020b	Encountered and interpreted following GBH5 and GBH6			
15 m of sand overlying 30 m of clay to bedrock at 45 depth.	16 m of sand and clay overlying 30 m of Unit 4 clay to bedrock at 44 to 49 m depth.			
24 m thicknesses of overburden interbedded siltstone and sandstone.	20 to 22 m thicknesses of overburden interbedded siltstone and sandstone.			
Top of Borehole Seam at 69 m depth	Top of Borehole Seam at ~ 66 to 69 m depth			
Borehole Seam thickness about 6 m with the bottoms comprising about 1.8 m and the tops 4.2 m	No change: GBH5 and GBH6 do not provide any additional data in this regard except that the seam thickness is greater than 5 m from GBH6.			
Mine working height (tops and bottoms) 6 m	No change: GBH5 and GBH6 do not provide any additional data in this regard.			
Mining layout: bord and pillar	No change: GBH6 confirmed a crushed pillar			
 Fault displacement: ~1.8 m with downside on the east from RT579 0.73 m with downside on the west from survey station 483a and 495 level difference 	Fault displacement ~1.8 m with downside on the east			
Subsidence: not expected to have occurred	Subsidence: pillar crush and subsidence, initially west of fault then extending east of the fault as interpreted from RT579 survey traverse path and boreholes as discussed in Section 5.			
Pillar stability:	Pillar stability:			
• Case 1a (full seam, intact, flooded) FoS 1.7 to 2.1	Case 1a not applicable as pillars failed			
 Case 3b "worst case during mining" (full seam, dewatered, reduced pillar width) FoS 0.8 to 1.0 				

Table 8-1 Comparison of anticipated mining conditions to encountered
8.2 Estimated subsidence

8.2.1 Comparison to documented subsidence events

As discussed in GHD 2020b, Section 2.3.2; descriptions of nearby subsidence events indicate up to about 0.6 m (two feet) of ground surface subsidence occurred at Darvall Street, south west of the site where tops and bottoms were taken in every bord. About 930 m north at Hargreave Street, three feet nine inches (~1.1 m) of subsidence was reported to have occurred in 1901/1902. This area is shown on RT579 and is also where tops and bottoms were taken in every bord. Geotechnical assessments by Coffey Geotechnics at Cottage Creek in 2009 about 650 m to the south, concluded that mine roof convergences of between 0.1 m and 1.65 m had occurred. These 'crushes' would have translated to surface subsidence of lesser magnitude as a function of the overburden characteristics.

The behaviour of the overburden in response to mine roof convergence dictates the profile of the surface subsidence. That is, the ground strains and curvature of the trough. For soil overburden materials, the profile shape can be estimated using soil mechanics theory employed in estimating surface subsidence profiles resulting from volume loss in tunnels.

Beneath the proposed building, there is about 22 m of rock overlying the mine workings and above this about 46 m thickness of alluvial clays and sands (GBH6). This is likely to be similar to conditions at Darvall Street. The fault passing beneath the site may locally increase roof convergence although the effects would not be directly reflected on the ground surface due to the ameliorating 'smoothing' effect of the overlying soils - in particular, the 30 m thick clay (Unit 4).

Estimates of maximum subsidence parameters are reported in GHD 2020b for the 'un-subsided' case where 0.6 m of maximum subsidence (S_{max}) is assumed to occur at ground surface based on the documented subsidence at Darvall Street.

8.2.2 Residual subsidence case

From review of the engineering logs and geophysics logs of GBH5 and GBH6 as discussed in Section 5, the remnant coal mine pillars beneath the proposed building are interpreted to be crushed. That is, roof convergence and the associated trough subsidence has already occurred west and east of the fault.

Despite the occurrence of roof convergence and hence trough subsidence, there is a possibility of future residual subsidence. That is, some much smaller amount of subsidence resulting from a change in stress conditions or reduction in coal pillar stiffness. Such residual subsidence often occurs in the months or years following longwall mining, triggered by changes in overburden stress caused by adjacent mining, alteration (usually lowering) of groundwater pressures or perhaps earthquake loading. While residual subsidence is a known phenomenon, the mechanism by which it would occur at the subject site is not established and as such, only estimates of the residual roof convergence can be used to calculate a resulting trough subsidence profile at the ground surface. For this purpose, we have considered two cases as follows:

- Residual mine roof convergence (Δ) of 0.1 m occurring anywhere beneath the site.
- Residual mine roof convergence (Δ) of 0.2 m occurring along the fault.

Where " Δ " represents the mine roof convergence as shown in Figure 8-1. The assumed subsidence profile is illustrated on Figure 8-1 as being two-dimensional. That is, the convergence Δ is assumed to have infinite length (into and out of the page).

Figure 8-1 Modelled residual subsidence case (schematic not to scale)

The effects of convergence are translated through the overlying fractured rock and soils based on soil mechanics theory as per the method of Mair *et al* (1993). While the concept is the same as 'angle of draw' (β) in mine subsidence with a subsidence limit of 20 mm adopted, the behaviour of soil is different to the rock that the commonly adopted 26.5° (1H:2V) angle of draw is based upon. A key input parameter for the subsidence profile calculation in Mair *et al* (1993) is the parameter 'K' which changes the maximum extent of the trough and so affects strain, tilt and curvature. The larger the K value, the wider the trough and hence the lesser the strain, tilt and curvatures. K is based on soil mechanics and is a function of soil type and depth (derived originally through semi-empirical methods). K values for clays are typically between 0.4 and 0.7 and for sand about 0.3. For this analysis we have used K of 0.1 for fractured rock (20 m thickness), 0.3 for sand (16 m thickness) and 0.6 for clay (30 m thickness) for a weighted average of 0.38.

The resulting ground surface profiles and associated strains, curvatures and tilts are shown under the below sub-headings for each case.

Stepped residual mine roof convergence (Δ) of 0.1 m occurring anywhere beneath the site

For this case, the maximum values of subsidence, strains, tilts and curvatures are relevant as the location of the convergence is not defined.

Figure 8-3 Resultant strain and tilt profile (Δ of 0.1 m)

 S_{max} is defined at x = 0 m in the above figures. The point of inflection is at x = - 25 m and is where horizontal strain is zero and tilt is maximum.

The maximum subsidence parameters from the above analysis are:

- Maximum subsidence S_{max} : 's' 36 mm
- Maximum tensile strain E+ = 0.24 mm/m
- Maximum compressive strain E- = 0.54 mm/m
- Maximum tilt T = 0.88 mm/m
- Minimum radius of curvature = 4.8 km

Stepped residual mine roof convergence (Δ) of 0.2 m occurring along the fault in the workings

For this case, the convergence is assumed to occur east of the fault which is a horizontal distance of about 13 m from the eastern edge of the proposed building at its closest point. Maximum values of subsidence, strains, tilts and curvatures within the proposed building footprint are relevant.

Figure 8-5 Resultant strain and tilt profile (Δ of 0.2 m along fault)

 S_{max} is defined at x = 0 m in the above figures coinciding with the fault. The point of inflection is at x = - 25 m and is where horizontal strain is zero and tilt is maximum.

The maximum subsidence parameters from the above analysis within the proposed building footprint are:

- Maximum subsidence S_{max} : 's' 63 mm
- Maximum tensile strain E+ = 0.5 mm/m
- Maximum compressive strain E- = 0.6 mm/m
- Maximum tilt T = 1.7 mm/m
- Minimum radius of curvature = 2.7 km

8.3 SA NSW Merit Assessment Policy and development options

For non-residential development such as that proposed, SA NSW assessment will be based on their Development Application – Merit Assessment Policy (SA NSW. 2018). We understand this document is currently under review by SA NSW.

The Merit Assessment Policy classifies proposed building developments into three categories, shown in the below Table 8-2. The proposed development could fall within the B2 category if construction cost is less than five million or the B3 categories, if greater than five million.

SA NSW category	General Classification of Building type				
B1	 Up to and including 3 storeys (including rooftop access) < 50 m maximum plan footprint dimension No basement No load bearing masonry construction Up to and equal to \$3 M construction cost 				
B2	 Up to and including 4 storeys (including basements and rooftop access); or Between \$3 M to \$5 M construction cost; or > 50 m in maximum plan footprint dimension 				
B3	 Greater than 4 storeys (including basements and rooftop access); or > 100 m maximum plan footprint dimension Greater than \$5 M construction cost; or Use - Hospital Wards, Operating theatres, critical public infrastructure, Public Buildings with high trafficability (i.e. school halls etc.) 				

Table 8-2 SA NSW Building Categories

The SA NSW assessment requirements for each building category are a function of the perceived level of geotechnical uncertainty as either low, medium or high, based on the level of confidence and understanding of the following weighted factors.

- Geological environment (R1) weighting 2
- Level of geotechnical investigation (R2) weighting 2
- Type of coal mine plans and records (R3) weighting 3
- Method used to assess stability and impact (R4) weighting 3

An uncertainty factor (UF) is then calculated by summing the products of R weightings and their uncertainty value (U) and finally subtracting 10 as follows:

Uncertainty Factor (UF) = $(R1 \times U + R2 \times U + R3 \times U \times R4 \times U) - 10$

Where: Low uncertainty, U = 1; Moderate uncertainty, U = 2; High uncertainty, U = 3.

Table C2 of the policy provides the reference descriptions for uncertainty categories.

For the subject site, our assessment of the SA NSW uncertainty factor (UF) is 12 as shown in the table below.

Factor	Weighting	Uncertainty	Product	Comment
R1	2	3	6	Fault present
R2	2	2	4	Two boreholes, pillar dimensions not confirmed
R3	3	3	9	Hand working, irregular
R4	3	1	3	Pillar failure has occurred
uncertainty factor (UF)			12	Product sum less 10

Table 8-3 SA NSW Uncertainty Factor calculation

An uncertainty factor greater than 10 is "High Uncertainty".

Table C3 of the Merit Assessment Policy sets out SA NSW's "Estimated Conditions of Approval for Trough Subsidence Risk". Different conditions are given depending on whether the assessed pillar (panel) factor of safety (FoS) and pillar width to height ratio is less than or greater than nominated criteria. The conditions are based on assessed pillar factors of safety (FoS) and the assumption that the pillars have not yet failed but may do so in the future.

However, as the investigation has concluded that the pillars have already failed and subsidence occurred, it is reasonable to assume that Table C3 is not directly applicable.

8.4 Mine subsidence recommendations

From our current understanding, mine convergence (crush) and trough subsidence has already occurred beneath the site. Residual subsidence to a much lesser degree is plausible, although a mechanism to trigger its occurrence has not been identified in this study.

Given the location of the proposed building on the western side of the site, thick sand and clay overburden units and indications that subsidence has already occurred, we recommend the proposed building be designed for residual subsidence effects.

Upper-bound estimates of likely adverse subsidence events have been considered for the potential mechanics of residual subsidence remaining beneath the site along the fault and elsewhere over the site. Estimates of residual subsidence effects (strain, tilt and curvature) resulting from mine roof convergence of 0.2 m along the fault or 0.1 m anywhere have been made and the following worst of these two cases could be used as subsidence design parameters:

- Maximum subsidence S_{max} : 's' 63 mm
- Maximum tensile strain E+ = 0.5 mm/m
- Maximum compressive strain E- = 0.6 mm/m
- Maximum tilt T = 1.7 mm/m
- Minimum radius of curvature = 2.7 km

SA NSW must provide approval conditions. The following is recommended based on extracts from Table C3 for a Category B3 building and must be confirmed by SA NSW.

Structure must be designed to be "safe, serviceable and readily repairable" under the predicted subsidence impact parameters". (This being the above residual subsidence parameters).

Submit plans prior to construction with a letter from a qualified structural engineer that the improvement will remain "safe, serviceable and any damage from mine subsidence shall be limited to 'very slight' in accordance with AS2870 (Damage Classification), and readily repairable". The subsidence impact parameters should be clearly stated.

Demonstrate that the improvement can be designed to remain "safe, serviceable and any damage from mine subsidence shall be limited to 'very slight' damage in accordance with AS2870 (Damage Classification), and readily repairable".

Submit an "Engineering Impact Statement" prior to commencement of detailed design for acceptance by SANSW, which shall identify the:

- a. Mine subsidence parameters used for the design.
- b. Main building elements and materials.
- c. Risk of damage due to mine subsidence
- d. Design measures proposed to control the risks
- e. Comment on the likely building damage in the event of mine subsidence and sensitivity of the design to greater levels of mine subsidence.

Submit detailed design drawings prior to commencement construction with the design measures proposed to control the mine subsidence risk clearly highlighted and the design subsidence parameters clearly marked on the plan.

A number of permanent survey marks to AHD will be required so that building movement can be monitored should mine subsidence occur. Survey marks need to be initially surveyed and all details are to be forwarded to Subsidence Advisory NSW.

Following construction, sign-off from qualified engineer that improvements have been constructed in accordance with plans submitted to SANSW and in accordance with all relevant codes and standards.

9. References

Acid Sulfate Soil Assessment Guidelines. ISBN 0 7347 0002 4. Acid Sulfate Soils Management Advisory Committee. 26 August, 1998.

Ahern CR, McElnea AE, Sullivan LA (2004). Acid Sulfate Soils Laboratory Methods Guidelines. In Queensland Acid Sulfate Soils Manual 2004. Department of Natural Resources, Mines and Energy, Indooroopilly, Queensland, Australia.

Australia Standard AS1726-2017, Geotechnical site investigations.

Australian Standard AS2159-2009, Piling - Design and installation.

Australian Standard AS3798-2007, *Guidelines for Earthworks for Commercial and Residential Developments*.

Australian Standard AS2159-2009, Piling - Design and Installation.

Austroads 2009, Guide to Pavement Technology – Part 10: Subsurface Drainage.

Coffey Services Australia (2019). Letter to Horizon Newcastle Pty Ltd. Proposed Lee 5 Development – 45 Honeysuckle Drive Newcastle – Mine subsidence deskstudy. Ref. 754-NTLGE223250-2-AB.Rev1, 24 April 2019.

Coulin, Edward (Ted) (undated). 1983-1995 History of Carrington – by (transcript)

Delta Collieries (undated). *Sheet 4 M12137 R13121370 / D100033990*, NSW Department of Planning Industry and Environment.

GHD (2020a). 46 Fitzroy St Carrington – Development Options. Proposal for mine subsidence and contamination assessment. Rev 1. 26 March 2020.

GHD (2020b). 46 Fitzroy Street, Carrington Mine Subsidence Assessment. Rev 0, 21 May 2020.

GHD (2021a). 46 Fitzroy Street / 65 Denison Street, Carrington. Proposal for geotechnical assessment. Rev 0, 2 February 2021.

GHD (2021b). Contamination Site Assessment - Lot 33 DP 1078910, March 2021.

Lc Cpl A. Barrett (1910). *Map of the Country around Newcastle N.S.W.* Royal Engineers, 30 November 1910.

Mair, R.J., Taylor, R. N. & Bracegirdle, A. (1993). Subsurface settlement profiles above tunnels in clays. Geotechnique 43, No.2, 315-320.

NSW Department of Planning, Industry and Environment (2020). eSPADE version 2.1 - acid sulfate soil risk mapping. eSPADE v2.1 (nsw.gov.au)

Rainsford Architecture and Design (2020). *Lot 33 DP 1078910 46 Fitzroy St, Carrington Proposed Commercial Development*. December 2020 – Sheets: A000, A004, A006, A100, A101, A110, A111, A112, A113, A114.

Subsidence Advisory NSW (2018). *Development Application – Merit Assessment Policy*, https://www.subsidenceadvisory.nsw.gov.au/sites/default/files/uploads/merit_policy-may_2018.pdf.

Wickham and Bullock Island Colliery (1906). *The Wickham and Bullock Island Colliery Workings, scale one chain to an inch*, RT579 D100017000.

Appendices

GHD | Report for Port of Newcastle Operations Pty Ltd - 65 Denison Street Development - Carrington, 12545790

Appendix A – General Notes and standard sheets

GENERAL NOTES

GHD

Specialist Services in Geotechnical Engineering, Geology, Field/Laboratory Testing and Hydrogeology www.ghd.com/Geotechnical

The report contains the results of a geotechnical investigation or study conducted for a specific purpose and client. The results may not be used or relied on by other parties, or used for other purposes, as they may contain neither adequate nor appropriate information. In particular, the investigation does not cover contamination issues unless specifically required to do so by the client.

To the maximum extent permitted by law, all implied warranties and conditions in relation to the services provided by GHD and the report are excluded unless they are expressly stated to apply in the report.

TEST HOLE LOGGING

The information on the test hole logs (boreholes, test pits, exposures etc.) is based on a visual and tactile assessment, except at the discrete locations where test information is available (field and/or laboratory results). The test hole logs include both factual data and inferred information. Moreover, the location of test holes should be considered approximate, unless noted otherwise (refer report). Reference should also be made to the relevant standard sheets for the explanation of logging procedures (Soil and Rock Descriptions, Core Log Sheet Notes etc.).

GROUNDWATER

Unless otherwise indicated, the water depths presented on the test hole logs are the depths of free water or seepage in the test hole recorded at the given time of measuring. The actual groundwater depth may differ from this recorded depth depending on material permeabilities (i.e. depending on response time of the measuring instrument). Further, variations of this depth could occur with time due to such effects as seasonal, environmental and tidal fluctuations or construction activities such as a change is ground surface level. Confirmation of groundwater levels, phreatic surfaces or piezometric pressures can only be made by appropriate surveys, instrumentation techniques and monitoring programmes.

INTERPRETATION OF RESULTS

The discussion or recommendations contained within this report normally are based on a site evaluation from discrete test hole data, often with only approximate locations (e.g. GPS). Generalised, idealised or inferred subsurface conditions (including any geotechnical cross-sections) have been assumed or prepared by interpolation and/or extrapolation of these data. As such these conditions are an interpretation and must be considered as a guide only.

CHANGE IN CONDITIONS

Local variations or anomalies in ground conditions do occur in the natural environment, particularly between discrete test hole locations or available observation sites. Additionally, certain design or construction procedures may have been assumed in assessing the soil-structure interaction behaviour of the site. Furthermore, conditions may change at the site from those encountered at the time of the geotechnical investigation through construction activities and constantly changing natural processes.

Any change in design, in construction methods, or in ground conditions as noted during construction, from those assumed or reported should be referred to GHD for appropriate assessment and comment.

GEOTECHNICAL VERIFICATION

Verification of the geotechnical assumptions and/or model is an integral part of the design process - investigation, construction verification, and performance monitoring. Variability is a feature of the natural environment and, in many instances, verification of soil or rock quality, or foundation levels, is required. There may be a requirement to extend foundation depths, to modify a foundation system and/or to conduct monitoring as a result of this natural variability. Allowance for verification by appropriate geotechnical personnel must be recognised and programmed for construction.

FOUNDATIONS

Where referred to in the report, the soil or rock quality, or the recommended depth of any foundation (piles, caissons, footings etc.) is an engineering estimate. The estimate is influenced, and perhaps limited, by the fieldwork method and testing carried out in connection with the site investigation, and other pertinent information as has been made available. The material quality and/or foundation depth remains, however, an estimate and therefore liable to variation. Foundation drawings, designs and specifications should provide for variations in the final depth, depending upon the ground conditions at each point of support, and allow for geotechnical verification.

REPRODUCTION OF REPORTS

Where it is desired to reproduce the information contained in our geotechnical report, or other technical information, for the inclusion in contract documents or engineering specification of the subject development, such reproductions must include at least all of the relevant test hole and test data, together with the appropriate Standard Description sheets and remarks made in the written report of a factual or descriptive nature.

Reports are the subject of copyright and shall not be reproduced either totally or in part without the prior written consent of GHD. GHD expressly disclaims responsibility to any person other than the client arising from or in connection with this report.

Specialist Services in Geotechnical Engineering, Geology, Field/Laboratory Testing and Hydrogeology www.ghd.com/Geotechnical

Soil is described in general accordance with <u>Australian Standard AS 1726-2017</u> (Geotechnical Site Investigations) in terms of visual and tactile properties, with potential refinement by laboratory testing. AS 1726 defines soil as particulate materials that occur in the ground and can be disaggregated or remoulded by hand in air or water without prior soaking. Classification of the soil is undertaken following description.

SOIL DESCRIPTION

The soil description includes a) Composition, b) Condition, c) Structure, d) Origin and e) Additional observations. 'FILL', 'TOPSOIL' or a 'MIXTURE OF SOIL AND COBBLES / BOULDERS' (with dominant fraction first) is denoted at the start of a soil description where applicable.

a) Soil Composition (soil name, colour, plasticity or particle characteristics, secondary and then minor components)

Soil Name: A soil is termed a *coarse grained soil* where the dry mass of sand and gravel particles exceeds <u>65%</u> of the total. Soils with more than <u>35%</u> fines (silt or clay particles) are termed *fine grained soils*. The soil name is made up of the primary soil component (in BLOCK letters), prefixed by applicable secondary component qualifiers. Minor components are applied as a qualifiers to the soil name (using the words 'with' or 'trace').

Particles are differentiated on the basis of size. 'Boulders' and 'cobbles' are outside the soil particle range, though their presence (and proportions) is noted. While individual particles may be designated as silt or clay based on grain size, fine grained soils are characterised as silt or clay based on tactile behaviour or Atterberg Limits, and not the relative composition of silt or clay sized particles.

Colour: The prominent colour is noted, followed by (spotted, mottled, streaked etc.) then secondary colours as applicable. Roughly equally proportioned colours are prefixed by (spotted, mottled, streaked etc.). Colour is described in its moist condition, though both wet and dry colours may also be provided if appropriate.

Plasticity: Fine grained soils are designated within standard ranges of plasticity based on tactile assessment or laboratory assessment of the Liquid Limit.

Particle Characteristics: The particle shape, particle distribution and particle size range within a coarse grained soil is described using standard terms. Particle composition may be described using rock or mineral names, with specific terms for carbonate soils.

Secondary and Minor Components: The primary soil is described and modified by secondary and minor components, with assessed ranges as tabulated.

Carbonate Soils: Carbonate content can be assessed by use of dilute '10%' HCl solution. Resulting clear sustained effervescence is interpreted as a *Carbonate soil* (approximately >50% carbonate), while weak or sporadic effervescence indicates *Calcareous soil* (< 50% carbonate). No effervescence is interpreted as a noncalcareous soil.

Organic and Peat Soils: Where identified, organic content is noted. *Organic soil* (2% to 25% organic matter) is usually identified by colour (usually dark grey/black) and odour (i.e. 'mouldy' or hydrogen sulphide odour). *Peat* (>25% organic matter) is identified by a spongy feel and fibrous texture. Peat soils' decomposition may be described as 'fibrous' (little / no decomposition), '*pseudo-fibrous'* (moderate decomposition) or '*amorphous'* (full decomposition).

Fraction	Compone	ents	Particle Size (mm)
	BOULDERS		> 200
Oversize	COBBLES		63 - 200
		Coarse	19 - 63
	GRAVEL	Medium	6.7 -19
Coarse grained		Fine	2.36 - 6.7
soil particles	SAND	Coarse	0.6 - 2.36
		Medium	0.21 - 0.6
		Fine	0.075 - 0.21
Fine grained soil	SILT		0.002 - 0.075
particles	CLAY		< 0.002

Plasticity Terms	Laboratory Liquid		
Silt	Silt Clay		
N/A	N/A	(Non Plastic)	
Low Planticity	Low Plasticity	≤ 35%	
LOW Plasticity	Medium Plasticity	> 35% and ≤ 50%	
High Plasticity	High Plasticity	> 50%	

Particle Distribution Terms (Coarse Grained Soils)				
Well graded	good representation of all particle sizes			
Poorly graded	one or more intermediate sizes poorly represented			
Gap graded	one or more intermediate sizes absent			
Uniform	essentially of one size			

Particle Shape Terms (Coarse Grained Soils)				
Rounded	Sub-angular	Flaky or Platy		
Sub-rounded	Angular	Elongated		

Fines (%)	Modifier (as applicable)	Accessory coarse (%)	Modifier (as applicable)
≤5	'trace silt / clay'	≤ 15	'trace sand / gravel'
> 5, ≤ 12	'with clay / silt'	> 15, ≤ 30	'with sand / gravel'
> 12	prefix 'silty / clayey'	> 30	prefix 'gravelly / sandy'

Secondary and Minor Components for Fine Grained Soils				
% Coarse	Modifier (as applicable)			
≤ 15	add "trace sand / gravel"			
> 15, ≤ 30	add <i>"with sand / gravel"</i>			
> 30	prefix soil "sandy / gravelly"			

GHD

Specialist Services in Geotechnical Engineering, Geology, Field/Laboratory Testing and Hydrogeology www.ghd.com/Geotechnical

b) Soil Condition (moisture, relative density or consistency)

Moisture: Fine grained soils are described relative to plastic or liquid limits, while coarse grained soils are assessed based on appearance and feel. The observation of seepage or free water is noted on the test hole logs.

Moisture - Coarse Grained Soils		Coarse Grained Soils	Moisture - Fine Grained Soils		
Term		Tactile Properties	Term		Tactile Properties
Dry	('D')	Non-cohesive, free running	Moist, dry of plastic limit	('w < PL')	Hard and friable or powdery
		Feels cool, darkened colour	Moist, near plastic limit	('w≈PL')	Can be moulded
Moist ('M')	tends to stick together	Moist, wet of plastic limit	('w > PL')	Weakened, free water forms on hands with handling	
Wet	('W')	Feels cool, darkened colour, tends to stick together, free	Wet, near liquid limit	('w≈LL')	Highly weakened, tends to flow when tapped
	()	water forms when handling	Wet, wet of liquid limit	('w > LL')	Liquid consistency, soil flows

Relative Density (Non Cohesive Soils): The Density Index is inherently difficult to assess by visual or tactile means, and is normally assessed by penetration testing (e.g. SPT, DCP, PSP or CPT) with published correlations. Assessment may be affected by moisture and *in situ* stress conditions. Density Index assessment may be refined by combination of *in situ* density testing and laboratory reference maximum and minimum density ranges.

Consistency (Cohesive Soils): May be assessed by direct measurement (shear vane, CPT etc.), or approximate tactile correlations. Cohesive soils include fine grained soils, and coarse grained soils with sufficient fine grained components to induce cohesive behaviour. A 'design shear strength' must consider the mode of testing, the *in situ* moisture content and potential for variations of moisture which may affect the shear strength.

Relative Density (Non-Cohesive Soils)			Consistency (Cohesive Soils)			
Term and (Symbol) Density Index		Density Index (%)	Term and (Symbol)		Tactile Properties	Undrained Shear Strength
Very Loose	(VL)	≤ 15	Very Soft	(VS)	Extrudes between fingers when squeezed	< 12 kPa
Loose	(L)	> 15 and \leq 35	Soft	(S)	Can be moulded by light finger pressure	12 - 25 kPa
Medium Dense	(MD)	> 35 and \leq 65	Firm	(F)	Can be moulded by strong finger pressure	25 - 50 kPa
Dense	(D)	>65 and ≤85	Stiff	(St)	Cannot be moulded by fingers	50 - 100 kPa
Very Dense	(VD)	> 85	Very Stiff	(VSt)	Can be indented by thumb nail	100 - 200 kPa
Consistency assessment can be influenced by moisture variation.			Hard	(H)	Can be indented with difficulty by thumb nail	> 200 kPa
			Friable	(Fr)	Easily crumbled or broken into small pieces by band	-

c) Structure (zoning, defects, cementing)

Zoning: The <i>in situ</i> zoning is described using the terms bel <i>'layer'</i> (a continuous zone across the exposed sample) <i>'lens'</i> (a discontinuous layer with lenticular shape)	ow. <i>'Intermixed</i> ' may be used for an irregular arrangement. <i>'pocket</i> ' (an irregular inclusion of different material). <i>'interbedded</i> ' or <i>"interlaminated</i> ' (alternating soil types)
Defects: Described using terms below, with dimension orie <i>'parting'</i> (an open or closed surface or crack sub parallel to layering with little / no tensile strength - open or closed)	ntation and spacing described where practical. <i>'softened zone'</i> (in clayey soils, usually adjacent to a defect with associated higher moisture content)
<i>'fissure'</i> (as per a parting, though not parallel or sub parallel to layering – may include desiccation cracks)	<i>'tube'</i> (tubular cavity, singly or one of a large number, often formed from root holes, animal burrows or tunnel erosion)
<i>'sheared seam'</i> (zone of sub parallel near planar closely spaced intersecting smooth or slickensided fissures dividing the mass into lenticular or wedge shaped blocks)	<i>'tube cast'</i> (an infilled tube – infill may vary from uncemented through to cemented or have rock properties)
'sheared surface' (a near planar, curved or undulating smooth, polished or slickensided surface, indicative of displacement)	<i>'infilled seam'</i> (sheet like soil body cutting through the soil mass, formed by infilling of open defects)
Cementation: Soils may be cemented by various substance gypsum), and the cementing agent shall be identified if practice of the statement of	s (e.g. iron oxides and hydroxides, silica, calcium carbonate, ctical. Cemented soils are described as:

weakly cemented easily disaggregated by hand in air or water

'moderately cemented' effort required to disaggregate the soil by hand in air or water

Materials extending beyond 'moderately cemented' are encompassed within the rock strength range. Where consistent cementation throughout a soil mass is identified as a duricrust, it is described in accordance with duricrust rock descriptors. Where alternate descriptors of cementation development are applied for consistency with regional practices or geology, or client requirements, these are outlined separately.

GHD

Specialist Services in Geotechnical Engineering, Geology, Field/Laboratory Testing and Hydrogeology www.ghd.com/Geotechnical

d) Origin

An interpretation is provided based on observations of landform, geology and fabric, and may further include assignment of a stratigraphic unit. The use of terms 'possibly' or 'probably' indicates a higher degree of uncertainty regarding the assessed origin or stratigraphic unit. Typical origin descriptors include:

Residual	Formed directly from in situ weathering with no visible structure or fabric of the parent soil or rock.
Extremely weathered	Formed directly from in situ weathering, with remnant and/or fabric from the parent rock.
Alluvial	Deposited by streams and rivers (may be applied more generically as transported by water).
Estuarine	Deposited in coastal estuaries, including sediments from inflowing rivers, streams, and tidal currents.
Marine	Deposited in a marine environment.
Lacustrine	Deposited in freshwater lakes.
Aeolian	Transported by wind.
Colluvial and Slopewash	Soil and rock debris transported down slopes by gravity (with or without assistance of water). Colluvium is typically applied to thicker / localised deposits, and slopewash for thinner / widespread deposits.
TOPSOIL	Surficial soil, typically with high levels of organic material. Topsoils buried by other transported soils are termed <i>'remnant topsoil'</i> . Tree roots within otherwise unaltered soil does not characterise topsoil.
FILL	Any material which has been placed by anthropogenic processes (i.e. human activity).

e) Additional Observations

Additional observations may be included to supplement the soil description. Additional observations may consist of notations relating to soil characteristics (odour, contamination, colour changes with time), inferred geology (with delineation of soil horizons or geological time scale) or notes on sampling and testing application (including the reliability, recovery, representativeness, or condition of samples or test conditions and limitations). If the material is assessed to be not representative, terms such as 'poor recovery', 'non-intact', 'recovered as' or 'probably' are applied.

SOIL CLASSIFICATION

Classification allocates the material within distinct soil groups assigned a two character Group Symbol:

Coarse Grained (sand and gravel:	Soils more than <u>65%</u> of soi	l coarser than 0.075 mm)	Fine Grained Soils (silt and clay: more than <u>35%</u> of soil finer than 0.075 mm)		
Major Division	ajor Division Group Symbol Soil Group		Major division	Group Symbol	Soil Group
GRAVEL	GW	GRAVEL, well graded		ML	SILT, low plasticity
(more than half of the coarse fraction is > 2.36 mm)	GP	GRAVEL, poorly graded SILT and CLAY (low to medium plasticity)		CL	CLAY, low plasticity
	GM			CI	CLAY, medium plasticity
	GC	Clayey GRAVEL		OL	Organic SILT
SAND	SW	SAND, well graded		МН	SILT, high plasticity
(more than half of the coarse fraction is < 2.36 mm)	SP	SAND, poorly graded	(high plasticity)	СН	CLAY, high plasticity
	SM	Silty SAND		ОН	Organic CLAY / SILT
	SC	Clayey SAND	Highly Organic	Pt	PEAT

Coarse grained soils with fines contents between 5% and 12% are provided a dual classification comprising the two group symbols separated by a dash, e.g. for a poorly graded gravel with between 5% and 12% silt fines (poorly graded 'GRAVEL with silt'), the classification is GP-GM.

For the purpose of classification, *poorly graded, uniform,* or *gap graded* soils are all designated as poorly graded. Soils that are dominated by boulders or cobbles are described separately and are not classified.

Classification is routinely undertaken based on tactile assessment with the soil description. Refinement of soil classification may be applied using laboratory assessment, including particle size distribution and Atterberg Limits. Atterberg Limits testing is applied to the sample portion finer than 0.425 mm. Fine grained soil components are assessed on the basis of regions defined within the Modified Casagrande Chart.

GHD

Specialist Services in Geotechnical Engineering, Geology, Field/Laboratory Testing and Hydrogeology www.ghd.com/Geotechnical

Rock is described in general accordance with <u>Australian Standard AS 1726-2017</u> (Geotechnical site investigations) in terms of visual and tactile properties, with potential refinement by laboratory testing. AS 1726 defines rock as any aggregate of minerals and/or organic materials that cannot be disaggregated by hand in air or water without prior soaking. The rock description and classification distinguishes between rock material, defects, structure and rock mass.

ROCK DESCRIPTION AND CLASSIFICATION

a) Description of rock material (rock name, grain size and type, colour, texture and fabric, inclusions or minor components, moisture content and durability)

Rock Name: Simple rock names are used to provide a reasonable engineering description rather than a precise geological classification. The rock name is chosen on the basis of origin, with common types summarised below. Additional, non-exhaustive, terminology is included in AS 1726. Rock names not described within AS 1726 may be adopted, with geological characteristics typically noted within accompanying text.

Grain	ain Sedimentary					Meta	morphic		Igneous	;
Size		Clastic or Detrital		onate				Falaia		
(mm)	Clastic o			Porous	Porous		Non-Follated	Feisic	\leftrightarrow	Matic
>2.0	CONGLO (rounde in a fine BRE((angular or irreq in a fine	MERATE d grains r matrix) CCIA gular fragments r matrix)	LIMESTONE (Predominantly CaCO ₃) or	CALCIRUDITE	AGGLOMERATE (rounded grains in a finer matrix) VOLCANIC BRECCIA (angular fragments in a finer matrix)	GNEISS	MARBLE (carbonate) QUARTZITE	GRANITE	DIORITE	GABBRO
2.0- 0.06	SANDSTONE		DOLOMITE (Bradaminanthy	CALCARENITE	TUFF	SCHIST	SERPENTINITE	MICRO- GRANITE	MICRO- DIORITE	DOLERITE
0.06- 0.002	MUDSTONE	SILTSTONE (mostly silt)	CaMgCO ₃)	CALCISILTITE	Fine grained	PHYLLITE	HORNFELS			DAGALT
<0.002	2 (silt and clay) CLAYSTONE			CALCILUTITE	TUFF	or SLATE		KITULITE	ANDESITE	DAGALI

Reproduced with modification from Tables 15, 16 and 17, Clause 6.2.3.1, AS 1726-2017, Geotechnical site investigations.

Grain size: For rocks with predominantly sand sized grains the dominant or average grain size is described as follows:

Rock type	Coarse grained	Medium grained	Fine grained
Sedimentary rocks	Mainly 0.6 mm to 2 mm	Mainly 0.2 mm to 0.6 mm	Mainly 0.06 mm (just visible) to 0.2 mm
Igneous and metamorphic rocks	Mainly >2 mm	Mainly 0.06 mm to 2 mm	Mainly <0.6 mm (just visible)

Colour assists in rock identification and interpolation. Rock colour is generally described in a *"moist"* condition, using simple terms (e.g. grey, brown, etc.) and modified as necessary by *"pale"*, *"dark"*, or *"mottled"*. Borderline colours may be described as a combination of these colours (e.g. red-brown).

Texture refers to the arrangement of, or the relationship between, the component grains or crystals (e.g. porphyritic, crystalline or amorphous).

Fabric refers to visible grain arrangement along a preferential orientation or a layering. Fabric may be noted as *"indistinct*" (little effect on strength) or *"distinct*" (rock breaks more easily parallel to the fabric). Common terms include *"massive"* or *"flow banding"* (igneous), *"foliation"* or *"cleavage"* (metamorphic). Sedimentary layering is described as *"bedding"* or (where thickness < 20 mm) *"lamination"*. The typical orientation, spacing or thickness of these structural features can be described directly in millimetres and metres. Further quantification of bedding thickness applied by GHD is as follows:

Bedding Term	Thickness
Very thickly bedded	>2 m
Thickly bedded	0.6 to 2 m
Medium bedded	0.2 to 0.6 m
Thinly bedded	60 to 200 mm
Very thinly bedded	20 to 60 mm
Laminated	6 to 20 mm
Thinly laminated	<6 mm

Features, Inclusions and Minor Components are typically only described when those features could influence the engineering behaviour of the rock. Described features may include: gas bubbles in igneous rocks; veins of quartz, calcite or other minerals; pyrite crystals and nodules or bands of ironstone or carbonate; cross bedding in sandstone; clast or matrix support in conglomerates and breccia.

Moisture content may be described by the feel and appearance of the rock, as follows: "*dry*" (looks and feels dry), "*moist*" (feels cool, darkened in colour, but no water is visible on the surface), or "*wet*" (feels cool, darkened in colour, water film or droplets visible on the surface). The moisture content of rock cored with water may not represent in situ conditions.

Durability of rock samples is noted where there is an observed tendency of samples to crack, breakdown in water or otherwise deteriorate with exposure.

Specialist Services in Geotechnical Engineering, Geology, Field/Laboratory Testing and Hydrogeology www.ghd.com/Geotechnical

b) Classification of the rock material condition (strength, weathering and/or alteration)

Estimated Strength refers to the rock material and not the rock mass. The strength is defined in terms of uniaxial compressive strength (UCS), though is typically estimated by either tactile assessment or Point Load Strength Index ($Is_{(50)}$) (measured perpendicular to planar anisotropy). A correlation between $Is_{(50)}$ and UCS is adopted for classification, though is not intended for design purposes without appropriate supporting assessment. A field guide follows:

Term aı (Symbo	nd ol)	UCS (MPa)	Is ₍₅₀₎ (MPa)	Field Guide	
Very Low	(VL)	0.6 – 2	0.03 - 0.1	Material crumbles under firm blows with sharp end of geological pick; can be peeled with knife; too hard to cut a triaxial sample by hand. Pieces up to 30 mm thick can be broken by finger pressure.	
Low	(L)	2 - 6	0.1 - 0.3	Easily scored with knife; indentations 1 to 3 mm show in the specimen with firm blows of a geological pick point; has dull sound under hammer. A piece of core 150 mm long by 50 mm diameter may be broken by hand. Sharp edges of core may be friable and break during handling.	
Medium	(M)	6 - 20	0.3 - 1.0	Readily scored with a knife; a piece of core 150 mm long by 50 mm diameter can be broken by hand with difficulty.	
High	(H)	20 - 60	1 - 3	A piece of core 150 mm long by 50 mm diameter cannot be broken by hand but can be broken by a geological pick with a single firm blow; rock rings under hammer.	
Very High	(VH)	60 - 200	3 -10	Hand specimen breaks with geological pick after more than one blow; rock rings under hammer.	
Extremely High	(EH)	>200	>10	Specimen requires many blows with geological pick to break through intact material; rock rings under hammer.	

Based on Table 19, Clause 6.2.4.1, AS 1726-2017, Geotechnical site investigations. Refer to source document for further detail.

Material with strength less than "very low" is described using soil characteristics, with the presence of an original rock texture or fabric noted if relevant.

Weathering and Alteration: The process of weathering involves physical and chemical changes to the rock resulting from exposure near the earth's surface. A subjective scale for weathering is applied as follows:

Weathering Term and (Symbol)		Description
Residual Soil	(RS)	Material has weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are no longer visible, but the soil has not been significantly transported.
Extremely Weathered	(XW)	Material has weathered to such an extent that it has soil properties. Mass structure, material texture and fabric of original rock are still visible.
Highly Weathered	(HW)	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is significantly changed by weathering. Some primary minerals have weathered to clay minerals. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores.
Moderately Weathered	(MW)	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable, but shows little or no change of strength from fresh rock.
Slightly Weathered	(SW)	Rock is partially discoloured with staining or bleaching along joints but shows little or no change of strength from fresh rock.
Fresh	(Fr)	Rock shows no sign of decomposition of individual minerals or colour changes.

Modified based on Table 20, Clause 6.2.4.2, AS 1726-2017, Geotechnical site investigations. Refer to source document for further detail.

Where physical and chemical changes to the rock are caused by hot gases or liquids at depth, the process is called alteration. Unlike weathering, the distribution of altered material may occur at any depth and show no relationship to topography. Where alteration minerals are identified the terms "extremely altered" (XA), "highly altered" (HA), "moderately altered" (MA) and "slightly altered" (SA) can be used to describe the physical and chemical changes described above.

Specialist Services in Geotechnical Engineering, Geology, Field/Laboratory Testing and Hydrogeology www.ghd.com/Geotechnical

c) Description of defects (defect type, orientation, roughness and shape, coatings and composition of seams, spacing, length, openness and thickness, block shape)

Defects often control the overall engineering behaviour of a rock mass. AS 1726 defines a defect as "a discontinuity, fracture, break or void in the material or materials across which there is little or no tensile strength". Describing the type, character and distribution of natural defects is an essential part of the description of many rock masses.

Commonly described characteristics of defects within a rock mass include type, orientation, roughness and shape, coatings and composition of seams, aperture, persistence, spacing and block shape.

The degree of detail required for defect descriptions depends on project requirements. All defects judged of engineering significance for the site and project are described individually. Where appropriate, generalised descriptions for less significant, or multiple similar, defects can be provided for delineated parts of rock core or exposures. A general description of delineated defect sets is provided when sufficient orientation data is available.

Defect Type is described using the terms summarised below. On core logs, only natural defects across which the core is discontinuous are described (i.e. inferred artificial fractures such as drill breaks are excluded). Incipient defects are described using the relevant texture or fabric terms. Healed defects (those that have been re-cemented by minerals such as chlorite or calcite) are described using the prefix "healed" (e.g. healed joint).

Type and (Symbol)		Description	Diagram
Parting	(Pt)	A surface or crack across which the rock has little or no tensile strength. Parallel or sub-parallel to layering (e.g. bedding) or a planar anisotropy in the rock material (e.g. cleavage). May be open or closed.	
Joint	(Jt)	A surface or crack with no apparent shear displacement and across which the rock has little or no tensile strength, but which is not parallel or subparallel to layering or to planar anisotropy in the rock material. May be open or closed.	
Sheared Surface	(SS)	A near planar, curved or undulating surface which is usually smooth, polished or slickensided and which shows evidence of shear displacement.	
Sheared Zone	(SZ)	Zone of rock material with roughly parallel near planar, curved or undulating boundaries cut by closely spaced joints, sheared surfaces or other defects. Some of the defects are usually curved and intersect to divide the mass into lenticular or wedge-shaped blocks.	
Sheared Seam	(SSm)	Seam of soil material with roughly parallel almost planar boundaries, composed of soil materials with roughly parallel near planar, curved or undulating boundaries cut by closely spaced joints, sheared surfaces or other defects. Some of the defects are usually curved and intersect to divide the mass into lenticular or wedge-shaped blocks.	
Crushed Seam	(CSm)	Seam of soil material with roughly parallel almost planar boundaries, composed of disoriented, usually angular fragments of the host rock material which may be more weathered than the host rock. The seam has soil properties.	
Infilled Seam	(ISm)	Seam of soil material usually with distinct roughly parallel boundaries formed by the migration of soil into an open cavity or joint, infilled seams less than 1 mm thick may be described as a veneer or coating on a joint surface.	
Extremely Weathered Seam	(WSm)	Seam of soil material, often with gradational boundaries. Formed by weathering of the rock material in place.	Seam

Modified based on Table 22, Clause 6.2.5.2, AS 1726-2017, Geotechnical site investigations. Refer to source document for further detail.

Defect Orientation is recorded as the "dip" (maximum angle of the mean plane, measured from horizontal) and the "dip direction" (azimuth of the dip, measured clockwise from true north). Dip and dip direction is expressed in degrees, with two-digit and three-digit numbers respectively, separated by a slash (e.g. 45/090). For vertical boreholes, the defect dip is measured as the acute angle from horizontal. Rock core extracted from vertical boreholes is generally not oriented, so the dip direction cannot be directly measured. For non-oriented inclined boreholes, a defect "alpha" (α) angle is measured as the acute angle from the core axis. For vertical and non-oriented inclined boreholes, the dip direction can sometimes be estimated from the relationship of the defect to a well-defined site structure such as fabric. For oriented inclined boreholes, the measurement of the defect orientation is carried out and recorded in a form suited to the particular device being used and later processed to report true dip and dip direction.

GHD

Specialist Services in Geotechnical Engineering, Geology, Field/Laboratory Testing and Hydrogeology www.ghd.com/Geotechnical

Roughness and Shape of the defect surface combine to have significant influence on shear strength. Standard descriptions and abbreviations include:

Roughness (Symbo	s and ol)	Description
Very Rough	(VR)	Many large surface irregularities (amplitude generally more than 1 mm Feels like, or coarser than very coarse sand paper.
Rough	(Rf)	Many small surface irregularities (amplitude generally less than 1 mm). Feels like fine to coarse sand paper.
Smooth	(So)	Smooth to touch. Few or no surface irregularities.
Polished	(Pol)	Shiny smooth surface.
Slickensided	(Slk)	Grooved or striated surface, usually polished.

Shape and (S	ymbol)	Description
Planar	(Pln	The defect does not vary in orientation.
Curved	(Cu)	The defect has a gradual change in orientation.
Undulating	(Un)	The defect has a wavy surface.
Stepped	(St)	The defect has one or more well defined steps.
Irregular	(lr)	The defect has many sharp changes of orientation.

Although the surface roughness of defects can be described at small (10-100 mm) scales of observation, the overall shape of the defect surface can usually be observed only at medium (0.1-1 m) and large (>1 m) scale.

Where it is necessary to assess the shear strength of a defect, observations are generally made at multiple scales. Surface roughness may also be characterised by using the joint roughness coefficient (JRC) profiles established by Barton and Choubey (1977). Where large-scale observations are possible, further measurement of defect "waviness" (angle of the asperities relative to the overall dip angle of the plane) is made.

Coatings and Composition of Seams: Many defects have surface coatings, which can affect their shear strength. Standard descriptions include:

Coating and (Symbol)		Description	Common N and (Syr	Common Minerals and (Symbol)	
Clean	(Cn)	No visible coating.	Clay	(CLAY)	
Stained	(Sn)	No visible coating but surfaces are discoloured.	Calcite	(Ca)	
Veneer (Ve) A		A visible coating of soil or mineral substance, but too thin to be	Carbonaceous	(X)	
Veneer	(00)	measured may be patchy.	Chlorite	(Kt)	
		A visible coating up to 1 mm thick. Soil material greater than 1 mm	Iron Oxide	(Fe)	
Coating	(Co)	thick is described using defect terms (e.g. infilled seam). Rock	Micaceous	(Mi)	
		material greater than 1 mm thick is described as a vein (Vn).	Manganese	(Mn)	
The composition of seams are described using soil description terms as given on the Pyrite (F					

The composition of seams are described using soil description terms as given on the SOIL DESCRIPTION AND CLASSIFICATION Standard Sheet. Where possible the mineralogy of coatings is identified. Common mineral coatings include:

Aperture: Defects across which there is little or no tensile strength can be either "open" (Op) or "closed" (Cl). For rock core, the width of the "open" defect is measured whilst still in the core barrel splits. The descriptor "tight" (Ti) can only apply to healed or incipient defects (i.e. veins, foliation, etc.).

Persistence and Spacing of defects is described directly in millimetres and metres. If the measurement of defect persistence is limited by the extent of the exposure, the end conditions are noted (i.e. 0, 1 or 2 defect ends observed). The spacing between defects of similar orientation (i.e. within a specific defect set) is recorded when possible.

The frequency of defects within rock core can be measured as either: the spacing between successive defects; or the "Fracture Index", which is the number of defects per metre of core.

Spacing Term	Thickness
Very wide	>2 m
Wide	0.6 to 2 m
Medium	0.2 to 0.6 m
Closely	60 to 200 mm
Very closely	20 to 60 mm
Extremely closely	6 to 20 mm

Quartz

(Qz)

Block Shape: Where it is considered significant, block shape can be described using the subjective terms as follows:

Block Shape	Description
Polyhedral	Irregular discontinuities without arrangement into distinct sets, and of small persistence.
Tabular	One dominant set of parallel discontinuities, for example bedding planes, with other non-continuous joints; thickness of blocks much less than length or width.
Prismatic	Two dominant sets of discontinuities, approximately orthogonal and parallel, with a third irregular set; thickness of blocks much less than length or width.
Equidimensional	Three dominant sets of discontinuities, approximately orthogonal, with occasional irregular joints, giving equidimensional blocks.
Rhomboidal	Three (or more) dominant, mutually oblique, sets of joints giving oblique-shaped, equidimensional blocks.
Columnar	Several, usually more than three sets of continuous, parallel joints usually crossed by irregular joints; lengths much greater than other dimensions.

Modified based on Table 23, Clause 6.2.5.7, AS 1726-2017, Geotechnical site investigations. Refer to source document for further detail.

Specialist Services in Geotechnical Engineering, Geology, Field/Laboratory Testing and Hydrogeology www.ghd.com/Geotechnical

L = 250 mm

L = 0

Extremely weathered

soundness requirement

E

Core run total length = 1.2

does not meet

d) Interpreted stratigraphic unit

Stratigraphic units may be interpreted and reported, in accordance with The Australian Stratigraphic Units Database (ASUD). The terms "possibly" or "probably" indicate increased uncertainty in this interpretation.

e) Geological structure

After describing the rock material and defects, an interpretation of the nature and configuration of rock mass defects may be presented in logs, charts, 2D sections and 3D models (e.g. dipping strata, folds, unconformities, weathering profiles, defect sets, geological faults, etc.).

PARAMETERS RELATED TO CORE DRILLING

Drill Depth and Core Loss: Drilling intervals are shown on GHD Core Log Sheets by depth increments and horizontal marker lines.

"Core loss", or its inverse "total core recovery" (TCR), is measured as a percentage of the core run. If the location of the core loss is known, or strongly suspected, it is shown in a region of the column bounded by dashed horizontal lines. If unknown, core loss is assigned to the bottom of a core run.

Rock Quality Designation (RQD), described by Deere et al. (1989), may be recorded on GHD Core Log Sheets.

For certain projects, such as tunnelling or underground mining investigations, rock mass ratings or classifications can be required as part of the design process. The RQD forms a component of these rock mass ratings and provides a quantitative estimate of rock mass quality from rock core logs.

The rock core must be "N" sized (nominally 50 mm) or greater for derivation of RQD. The RQD is expressed as a percentage of intact rock core (excluding residual soil and extremely weathered rock) greater than 100 mm in length over the total selected core length.

Deere et al. (1989) recommends measuring lengths of core along the centreline, as shown right.

RQD measurement procedure (reproduced from Figure 13, Clause 6.2.9.4, AS 1726-2017, Geotechnical site investigations)

 $RQD = \frac{250 + 190 + 200}{1000} \times 100\%$

1200

RQD is expressed as:

$$RQD = \frac{\sum Length \ of \ sound \ core \ pieces > 100 \ mm \ in \ length}{Length \ of \ core \ run} \ x \ 100\%$$

ROCK MASS CLASSIFICATION

Rock mass classification schemes may be used to represent the engineering characteristics of a rock mass. A large variety of classification schemes have been developed by various authors, ranging from simple to complex. All of the schemes are limited in their application and many rock mass classification systems assume that the rock mass is isotropic, which is rarely the case.

References

STANDARDS AUSTRALIA (2017). AS 1726-2017. GEOTECHNICAL SITE INVESTIGATIONS.

BARTON, N. AND CHOUBEY, V. (1977). THE SHEAR STRENGTH OF ROCK JOINTS IN THEORY AND PRACTICE. ROCK MECHANICS 10, 1-54. SPRINGER. DEERE, D.U. AND DEERE, D.W. (1989). ROCK QUALITY DESIGNATION (RQD) AFTER TWENTY YEARS. CONTRACT REPORT GL-89-1. ARMY CORPS OF ENGINEERS. WASHINGTON DC, 1989.

GLOSSARY OF SYMBOLS

GHD

Specialist Services in Geotechnical Engineering, Geology, Field/Laboratory Testing and Hydrogeology www.ghd.com/Geotechnical

This standard sheet should be read in conjunction with all test hole log sheets and any idealised geological sections prepared for the investigation report.

	GENERAL		
Symbol	Description	Symbol	Description
D	Disturbed Sample	R	Rising Head Permeability Test
В	Bulk Sample	F	Falling Head Permeability Test
U(50)	Undisturbed Sampled (suffixed by sample size or tube diameter in mm if applicable)	PBT	Plate Bearing Test
CS	Core Sample (suffixed by diameter in mm))	Water Inflow (make)
ES	Soil sample for environmental sampling		Water Outflow (loss)
PID	Photoionisation Detector	$\mathbf{\nabla}$	Temporary Water Level
SPT	Standard Penetration Test (with blows per 0.15m)	V	Final Water Level
Ν	SPT Value	•	Point Load Test (axial)
HB/HW	SPT Hammer Bouncing/Hammer Weight	0	Point Load Test (diametric)
PP/HP	Pocket/Hand Penetrometer (suffixed by value kPa)	PL	Point Load (kPa)
РК	Packer Test (kPa)	IMP	Impression Device Test
PZ	Piezometer Installation	PM	Pressuremeter Test
SV/VS	Shear Vane Test (suffixed by value in kPa)		

			SOIL S	YMBOLS						
Main Co	omponents		Minor C	components						
	SAND	FILL	· · · ·	sandy	****	vege	vegetation, roots			
0000	GRAVEL	SILT	0000	gravelly		silty				
	CLAY	TOPSOIL		clayey	Note: I combil	Natural soil nation of co	tural soils are generally a tion of constituents, e.g. sandy CLAY			
			ROCK	SYMBOLS						
Sedime	ntary					Igneous				
	SANDSTONE	SILTSTONE		CONGLOMER	ATE	+ + + + + +	GRANITI C ROCK		IGNEOUS	
	CLAYSTONE	SHALE		COAL		BASALT IC ROCK			DYKE	

Note: Additional rock symbols may be allocated for a particular project

NATURAL DEFECTS (Coding)

Defect	Туре		Orientation									
Jt	Joint		For vertical	non-or	iented core .	"Dip" aı	ngle (eg. 5°) measured	relative	to horizontal.			
Pt	Parting		For inclined	l non-o	riented core	"Angle	" measured relative to c	ore axis	S.			
SS	Sheared Su	urface	For inclined oriented core "Dip" angle and "Dip Direction" angle (eg. 45°/225° mag.).									
WSm	Weathered	Seam	Orientatio	ו (con'	t)	Rough	ness	Coatir	ng			
SSm	Sheared Seam		VT	Vertic	al	Pol	Polished	Cn	Clean			
CSm	m Crushed Seam		HZ or 0°	HZ or 0° Horizon		So	Smooth	Sn	Stained			
ISm	Sm Infilled Seam		d / °	Degre	es	Rf	Rough	Ve	Veneer			
SZ	Sheared Zo	one				VR	Very Rough	Со	Coating			
VN	Vein					Slk	Slickensided					
Shape						Infilling	/ Common Materials					
Pln	Planar		St	Stepp	ed	CLAY	Clay	Mi	Micaceous			
Cu	Curved		Ir	Irregu	llar	Са	Calcite	Mn	Manganese			
Un	n Undulating		Dis	Discontinuous		Х	Carbonaceous	Ру	Pyrite			
Others	Others					Kt	Chlorite	Qz	Quartz			
OP	OP Open CL		Closed	Ti	Tight	Fe	Iron Oxide	MU	Unidentified Mineral			

Specialist Services in Geotechnical Engineering, Geology, Field/Laboratory Testing and Hydrogeology www.ghd.com/Geotechnical

GENERAL

Samples extracted during the fieldwork stage of a site investigation may be "disturbed" or "undisturbed" (as generally indicated on the test hole logs) depending upon the nature and purpose of the sample as well as the method of extraction, transportation, extrusion and testing. This aspect should be taken into account when assessing test results, which must of necessity, reflect the effects of such disturbance.

All soil properties (as measured by laboratory testing) exhibit inherent variability and thus a certain statistical number of tests is required in order to predict an average property with any degree of confidence. The site variability of soil strata, future changes in moisture and other conditions and the discrete sampling positions must also be considered when assessing the representative nature of the laboratory programme.

Certain laboratory test results provide interpreted soil properties as derived by conventional mathematical procedures. The applicability of such properties to engineering design must be assessed with due regard to the site, sample condition, procedure and project in hand.

TESTING

Laboratory testing is normally carried out in accordance with Australian Standard AS 1289 as amended, or in NSW, Roads and Maritime Services (RMS) standards when specified. The routine Australian Standard tests are as follows: Moisture Content AS1289 2.1.1

Liquid Limit	AS1289 3.1.1	
Plastic Limit	AS1289 3.2.1	collectively known as Atterberg Limits
Plasticity Index	AS1289 3.3.1	
Linear Shrinkage	AS1289 3.4.1	
Particle Density	AS1289 3.5.1	
Particle Size Distribution	AS1289 3.6.1, 3.6.2 and 3.6.3	
Emerson Class Number	AS1289 3.8.1	
Percent Dispersion	AS1289 3.8.2	collectively, Dispersive Classification
Pinhole Dispersion Classification	AS1289 3.8.3	
Hole Erosion (HE)	GHD Method	
No Erosion Filter (NEF)	GHD Method	
Organic Matter	AS1289 4.1.1	
Sulphate Content	AS1289 4.2.1	
pH Value	AS1289 4.3.1	
Resistivity	AS1289 4.4.1	
Standard Compaction	AS1289 5.1.1	
Modified Compaction	AS1289 5.2.1	
Dry Density Ratio	AS1289 5.4.1	
Minimum Density	AS1289 5.5.1	
Density Index	AS1289 5.6.1	
California Bearing Ratio	AS1289 6.1.1 and 6.1.2	
Shear Box	AS1289 6.2.2	
Undrained Triaxial Shear	AS1289 6.4.1 and 6.4.2	
One Dimensional Consolidation	AS1289 6.6.1	
Permeability Testing	AS1289 6.7.1, 6.7.2 and 6.7.3	

Where tests are used which are not covered by appropriate standard procedures, details are given in the report.

LABORATORIES

Our Australian laboratories are NATA accredited to AS ISO / IEC17025 for the listed tests.

The oedometer, triaxial and shear box equipment are fully automated for continuous operation using computer controlled data acquisition, processing and plotting systems.

GHD Specialist Services in Geotechnical Engineering, Geology, Field/Laboratory Testing and Hydrogeology www.ghd.com/Geotechnical

SCOPE

The Cone Penetration Test (CPT) comprises the measurement of soil resistance in response to a steel cone pushed into the ground at a constant rate. The CPTU (or piezo cone) test involves sophisticated equipment yet is simple in operation and provides rapid, almost continuous traces of soil response, with good repeatability.

The CPT/CPTU test is commonly employed as a means of extrapolation of discrete borehole data for a particular site. The interpretation of CPT and CPTU results without appropriate borehole data correlation must be considered for guide purposes only and should not be used in isolation for detailed design.

EQUIPMENT AND METHOD

The steel cone consists of a 37 mm diameter, 60° cone, hydraulically pushed vertically down into the soil profile. The piezo probe includes the measurement of cone resistance (q_c), friction sleeve (f_s), inclinometer and pore pressure (u) whilst the friction cone used for CPT testing includes cone resistance and friction sleeve readings only. The porous element of the piezo cone is situated on the cylindrical shaft immediately behind the cone. The rate of penetration for both cones is approximately 20 mm/sec with readings taken usually at 20 mm intervals throughout the profile.

The CPTU test is typically initiated by inserting the pre-saturated probe into a pre-drilled hole below the ground water table. The probe is then permitted to achieve temperature stabilisation prior to conducting the penetration test.

The CPT/CPTU readings are measured using load cells and strain gauges set in the probe. The signals from these gauges are transmitted to an analogue/digital converter. The digitised data is then recorded and stored on a lap-top computer for later analysis. In particular, data reduction includes processing of the q_c results recorded with the piezo cone to total resistance (q_t) values using the corresponding pore pressure value in accordance with published procedures.

The piezo cone can also be used to perform pore pressure dissipation measurements at selected test levels to determine the localised lateral drainage characteristics of the subsoil. Depending on the rate of dissipation, the excess pore pressure is recorded during the dissipation test until a nominated degree of dissipation is achieved.

The cone penetration test is terminated once the probe reaches refusal, when the rods behind the probe cannot be advanced further due to resistance developed along the rods or when the force required to advance the rods exceeds the capacity of the testing vehicle or frame. The probe is then withdrawn from the ground and the readings corrected to take into account effects of the temperature variation at depth.

INTERPRETATION

The CPT and CPTU results can be used to assess the soil profile at specific test locations and to estimate soil strength and consolidation characteristics. As mentioned previously, such interpretations are generally performed in association with discrete borehole data.

In particular, the interpretations must take account of the soil type (and consequent drainage conditions), soil strength, sensitivity and stress history (i.e. normally or over-consolidated). Details of these are beyond the scope of this explanation sheet.

Appendix B – Figures

Legend	Paper Size ISO A3	Ι.	
Site Boundary	0 6.5 13 19.5 26	N N	
Borehole location	Meters Map Projection: Transverse Mercator		GHD
CPT location	Horizontal Datum: GDA 1994 Grid: GDA 1994 MGA Zone 56		

G:22112527619/GISIMaps112527619_FitzroyStMineSubsidenceAndContamination\12545790_Geotech_0.aprx\12545790_G001_Geotech_0 Print date: 22 Mar 2021 - 08:34

Port of Newcastle Operations Pty Ltd 65 Denison St / 46 Fitzroy St Carrington Geotechnical and Mine Subsidence Assessment

Project No. **12545790** Revision No. **0** Date **22/03/2021**

Borehole and CPT location plan

FIGURE 1

Data source: LPI: DCDB/DTDB, 2017. public_NSW_Imagery: © Department of Customer Service 2020

Note

* GBH5 location at seam level is 0.3m toward 160° bearing. * GBH6 location at seam level is 0.9m toward 194^o bearing.

Disclaimer

Any excerpts of original mine survey plans or record tracings and any data derived from such original mine survey plans or record tracings must not be relied upon in any way by any person, including (without limitation) for the accuracy or completeness of mine workings, and are intended for indicative purposes only. The Department of Planning is not responsible or liable to any person for any loss or liability arising out of or in connection with use of any such excerpts or derived data.

G:2212527619(GIS)Mapsi12527619_FitzroySIMineSubsidenceAndContamination12545790_Geotech_0.aprx112545790_G002_MineWorkings_M12137_0 Print date: 22 Mar 2021 - 08:34

Port of Newcastle Operations Pty Ltd 65 Denison St / 46 Fitzroy St Carrington Geotechnical and Mine Subsidence Assessment

M12137 Sheet 4 Delta Colliery plan extract

Project No. 12545790 Revision No. 0

Date 22/03/2021

FIGURE 2

Data source: LPI: DCDB/DTDB, 2017. De Witt Consulting: RT0579 R10000566 Plan of workings- sheet 1 (pt 1) of 4. 1ch1inch.jpg/RT0579 R10000566 Plan of workings- sheet 2 (pt 1) of 4. 1ch1inch.jpg/RT0579 R10000566 Plan of workings- sheet 2 (pt 1) of 4. 1ch1inch.jpg/RT0579 R10000566 Plan of workings- sheet 2 (pt 1) of 4. 1ch1inch.jpg/RT0579 R10000566 Plan of workings- sheet 2 (pt 1) of 4. 1ch1inch.jpg/RT0579 R10000566 Plan of workings- sheet 2 (pt 1) of 4. 1ch1inch.jpg/RT0579 R10000566 Plan of workings- sheet 2 (pt 1) of 4. 1ch1inch.jpg/RT0579 R10000566 Plan of workings- sheet 2 (pt 1) of 4. 1ch1inch.jpg/RT0579 R10000566 Plan of workings- sheet 2 (pt 1) of 4. 1ch1inch.jpg/RT0579 R10000566 Plan of workings- sheet 2 (pt 1) of 4. 1ch1inch.jpg/RT0579 R10000566 Plan of workings- sheet 2 (pt 1) of 4. 1ch1inch.jpg/RT0579 R10000566 Plan of workings- sheet 2 (pt 1) of 4. 1ch1inch.jpg/RT0579 R10000566 Plan of workings- sheet 2 (pt 1) of 4. 1ch1inch.jpg/RT0579 R10000566 Plan of workings- sheet 2 (pt 1) of 4. 1ch1inch.jpg/RT0579 R10000566 Plan of workings- sheet 2 (pt 1) of 4. 1ch1inch.jpg/RT0579 R10000566 Plan of workings- sheet 2 (pt 1) of 4. 1ch1inch.jpg/RT0579 R10000566 Plan of workings- sheet 2 (pt 1) of 4. 1ch1inch.jpg/RT0579 R10000566 Plan of workings- sheet 2 (pt 1) of 4. 1ch1inch.jpg/RT0579 R10000566 Plan of workings- sheet 2 (pt 1) of 4. 1ch1inch.jpg/RT0579 R10000566 Plan of workings- sheet 2 (pt 1) of 4. 1ch1inch.jpg/RT0579 R10000566 Plan of workings- sheet 2 (pt 1) of 4. 1ch1inch.jpg/RT0579 R10000566 Plan of workings- sheet 2 (pt 1) of 4. 1ch1inch.jpg/RT0579 R10000566 Plan of workings- sheet 2 (pt 1) of 4. 1ch1inch.jpg/RT0579 R10000566 Plan of workings- sheet 2 (pt 1) of 4. 1ch1inch.jpg/RT0579 R10000566 Plan of workings- sheet 2 (pt 1) of 4. 1ch1inch.jpg/RT0579 R10000566 Plan of workings- sheet 2 (pt 1) of 4. 1ch1inch.jpg/RT0579 R10000566 Plan of workings- sheet 2 (pt 1) of 4. 1ch1inch.jpg/RT0579 R10000566 Plan of workings- sheet 2 (pt 1) of 4. 1ch1inch.jpg/RT0579 R10000566 Plan of workings- sheet 2 (pt 1) of 4. 1ch

Note

* GBH5 location at seam level is 0.3m toward 160° bearing. * GBH6 location at seam level is 0.9m toward 194^o bearing.

Disclaimer

Any excerpts of original mine survey plans or record tracings and any data derived from such original mine survey plans or record tracings must not be relied upon in any way by any person, including (without limitation) for the accuracy or completeness of mine workings, and are intended for indicative purposes only. The Department of Planning is not responsible or liable to any person for any loss or liability arising out of or in connection with use of any such excerpts or derived data.

Port of Newcastle Operations Pty Ltd 65 Denison St / 46 Fitzroy St Carrington Geotechnical and Mine Subsidence Assessment

Project No. 12545790 Revision No. 0

Date 22/03/2021

Record Tracing RT579 extract

FIGURE 3

Data source: LPI: DCDB/DTDB, 2017. De Witt Consulting: RT0579.R10000566.Plan of workings- sheet 1 (pt 1) of 4. 1ch1inch.jpg/RT0579.R10000566.Plan of workings- sheet 2 (pt 1) of 4. 1ch1inch.jpg. Create

Appendix C – Borehole logs and core photographs

BOREHOLE LOG SHEET Client : Port of Newcastle 31/3/2 HOLE No. GBH1 Project : Proposed Commercial Development SHEET 1 OF 1 TEMPLATE 2.00.GDT Location : 46 Fitzroy Street / 65 Denison Street, Carrington NSW Position : 384448.9 E 6357153.1 N MGA2020/56 Surface RL: 1.88m AHD Angle from Horiz. : 90° Processed : SBO Rig Type : Mounting: Truck Contractor: Total Drilling Pty Ltd Driller : Glen Gearside Checked : SJM Scout Date Started : 22/2/2021 Date Completed : 22/2/2021 Logged by : Nick Leaver Date: 03/03/2021 te: * indicates signatures on origi issue of log or last revision of log DRILLING MATERIAL BOREHOLE AS1726 2017 12545790 DENISON ST CARRINGTON.GPJ GHD GEO Description Comments/ Moisture Condition Samples & Tests Observations **Drilling Method** Hole Support \ Casing Consistency / Density Index [COBBLES/BOULDERS/FILL/TOPSOIL] then JSC Symbol Graphic Log SCALE (m) SOIL NAME: plasticity / primary particle characteristics, colour, secondary and minor components, zoning (origin) and Depth metres Water ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects [TOPSOIL/FILL]: Sandy SILT: brown to dark grey, fine to Μ 0.10 medium sand, rootlets up to 100mm. Μ [FILL]: SAND: fine to medium grained, brown. ASS 0.85 [FILL]: SAND: fine to medium, grey/brown, organic matter Μ Auger present, trace fines and gravel. Ē GEO в W $22/2/2/2^{-1}$ 1.40 CH Sandy CLAY: high plasticity, dark brown, fine grained sand Μ F (estuarine). 1.75 SP SAND: medium grained, white to grey, trace shell fragments W D-VD (marine). 2.00 2 End of borehole at 2.00 metres. Target Depth 3 4 5 GHD Job No. See standard sheets for Level 3, GHD Tower, 24 Honeysuckle Drive, Newcastle 2300 Australia T: +61 2 4979 9999 F: +61 2 4979 9988 E: ntlmail@ghd.com ЯÐ details of abbreviations 12545790 & basis of descriptions CONSULTING GEOTECHNICAL ENGINEERS AND GEOLOGISTS

ВС	DREHO	LE LOO	G SHE	ET										
3/21	ient :	Port	of Nev	wcastle				HOLE N	0	GB	H2			
ਇੰ Pro	oject :	Prop	oosed (Commercia	al Develo	opment			0.					
	cation	: 46 F	itzroy	Street / 65	Deniso	n Stree	t, Carr	ington NSW	0	SHEE				
07 P0	a Type	· Scol	483.1 E	= 0357094. Mo	y in in	Truck	0/ 00	Contractor: Total Drilling Bty Ltd Driller: Glen Gearside			Checked : SIM			
	te Star	ted: 2	3/2/20	21	unung.	Dat	te Con	npleted : 23/2/2021 Logged by : Nick Leaver			Date: 03/03/2021			
			ING					MATERIAI			Note: * indicates signatures on original issue of log or last revision of log			
090	1													
N ST CARRINGTON.GPJ GHD SCALE (m)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth metres	Graphic Log	USC Symbol	Description [COBBLES/BOULDERS/FILL/TOPSOIL] then SOIL NAME: plasticity / primary particle characteristics, colour, secondary and minor components, zoning (origin) and ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects	Moisture Condition	Consistency / Density Index	Comments/ Observations			
					0.20			[TOPSOIL/FILL]: Silty SAND: brown, rootlets to 30mm.	М					
12/90								[FILL]: Gravelly SAND: medium grained, brown to grey, gravel up to 100mm	м					
GE0_B0REHOLE_AS1726_2017_1254		-Nil		В	0.40			[FILL]: SAND: medium grained, pale grey, trace shell and shell fragments.	M		- - - - - - - - - - - - - - -			
-				-	1.30	>>>	CI	CLAY: medium plasticity, dark brown to dark grey (estuarine)	м	F				
ŀ				ASS	1 50		01			'	-			
-			23/Ź/21	В	2.00		SP	SAND: medium grained, brown, trace of shell fragments.	W	D				
-3-3444								Target Depth						
-5 Se de &	ee standard sheets for etails of abbreviations basis of descriptions										Job No. 12545790			

В	BOREHOLE LOG SHEET													
C	lient :	Por	t of Ne	wcastle Commoroid		onmont			0.	GE	3H3			
	ocation	: 461	Fitzrov	Street / 65	Develo Deniso	n Stree	t. Carr	ington NSW		SHE	ET 1 OF 4			
P	osition	: 384	413.1 E	E 6357124.	9 N N	1GA202	0/ 56	Surface RL: 2.05m AHD Angle from Horiz. : 90	>		Processed : SBO			
R	ig Type	: Sco	ut	Мо	unting	: Truck		Contractor : Total Drilling Pty Ltd Driller : Glen Gearside			Checked : SJM			
D	ate Sta	rted: 2	22/2/20	21		Dat	e Con	npleted : 22/2/2021 Logged by : Nick Leaver			Date: 03/03/2021			
		DRILL	ING					MATERIAL			Note: " indicates signatures on original issue of log or last revision of log			
	q			sts						Comments/ Observations				
SCALE (m)	Drilling Metho	Hole Support \ Casing	Water	Samples & Te	Depth metres	Graphic Log	USC Symbol	[COBBLES/BOULDERS/FILL/TOPSOIL] then SOIL NAME: plasticity / primary particle characteristics, colour, secondary and minor components, zoning (origin) and ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects	Moisture Con	Consistency / Density Index				
-					0.15			[TOPSOIL/FILL]: Silty SAND: medium to coarse grained, brown to dark grey, rootlets up to 150mm.	M					
- - - - - - - 1 - 1			V	SPT ?/?/? N=15	1 23			[FILL]: SAND: medium to coarse, brown, trace fine gravel and shell fragments.	М					
F			22/2/2/2	1	1.23			[FILL]: SAND: fine to medium grained, brown to grey, with silt.	W	-				
ļ.					1 55									
-	Auger	- Nil		ASS+SPT 7/7/7	1.85		CI	Sandy CLAY: medium plasticity, grey to dark grey, fine to medium grained sand (estuarine).	W	F	ASS confirmed			
- -2 - - - - -				N=14			SP	SAND: medium grained, brown to grey, trace shells and shell fragments, organic matter (marine).	W	D				
- -3 - - -				ASS+SPT 2/3/3 N=6	3.40		CI	Sandy CLAY: medium plasticity, grey to dark grey, fine	W	F				
- - - -4	0	- Dî						grained sand (estuarine).						
	Washbor	HWT casi		SPT 1/6/8 N=14	4.30		SP	SAND: medium grained, dark grey, trace shell fragments (marine).	W	D				
-5			I		·	<u></u>	<u> </u>	1						
S	ee star	ndard s	sheets	for		GH[Level) 3, GHE	D Tower, 24 Honeysuckle Drive, Newcastle 2300 Australia	J	do N	NO.			
a &	basis	of des	criptic	ons		T: +6 CON	1 2 497 SULTI	79 9999 F: +61 2 4979 9988 E: ntlmail@ghd.com NG GEOTECHNICAL ENGINEERS AND GEOLOGISTS		•	12545790			

_	BO	REHOL	E LO	g shei	ET							
	Clie	ent :	Port	of Nev	wcastle					0.	GB	H3
	Proj	ject :	Prop • 46 r	oosed (Commercia Stroot / 65	l Develo	opment	t Corr		•	SHEE	T 2 OF 4
	Pos	sition :	. 40 r 384	413.1 E	5 6357124.	9 N M	IGA202	0/ 56	Surface RL: 2.05m AHD Angle from Horiz.: 90	,		Processed : SBO
	Rig	Туре	: Scou	ut	Мо	unting:	Truck		Contractor : Total Drilling Pty Ltd Driller : Glen Gearside			Checked : SJM
	Dat	e Star	ted: 2	2/2/20	21		Dat	te Con	npleted : 22/2/2021 Logged by : Nick Leaver			Date: 03/03/2021
			DRILL	.ING					MATERIAL			Note: * indicates signatures on original issue of log or last revision of log
									Preservitien.			
		Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth metres	Graphic Log	USC Symbol	COBBLES/BOULDERS/FILL/TOPSOIL] then SOIL NAME: plasticity / primary particle characteristics, colour, secondary and minor components, zoning (origin) and ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects	Moisture Condition	Consistency / Density Index	Comments/ Observations
	6					7.30		SP	SAND: as previous.	W	D	- - - - - - - - - - - - - - - - - - -
	9	Washbore			SPT 14/14/28 N=42	9.00		SP	SAND: medium grained, grey, with shells up to 50mm and shell fragments (marine).	w	VD	- - - - - - - - - - - - - - - - - - -
	See	See standard sheets for stails of abbreviations GHD Level 3, GHD Tower, 24 Honeysuckle Drive, Newcastle 2300 Australia T: +61 2 4979 9999 F: +61 2 4979 9988 E: ntlmail@ghd.com										lo. 12545790

-	во	REHOL	E LO	G SHE	ET							
12/0		ent :	Port	of Ne	wcastle				HOLE N	0.	GB	H3
5	Pro	ject : cation ·	Prop 46 P	oosed (Commercia Street / 65	l Develo	opment	t At Carr	ington NSW		SHEE	T 3 OF 4
	Pos	sition :	384	413.1 E	E 6357124.	9 N N	IGA202	20/ 56	Surface RL: 2.05m AHD Angle from Horiz.: 90'	>		Processed : SBO
i	Rig	Type	Scou	ıt	Мо	unting	Truck		Contractor : Total Drilling Pty Ltd Driller : Glen Gearside			Checked : SJM
	Dat	te Start	ed: 2	2/2/20	21		Dat	te Con	npleted : 22/2/2021 Logged by : Nick Leaver			Date: 03/03/2021
			DRILL	ING					MATERIAL			Note: * indicates signatures on origina issue of log or last revision of log
	SCALE (M)	Jrilling Method	Hole Support Casing	Vater	àamples & Tests	Jepth netres	Braphic Log	JSC Symbol	Description [COBBLES/BOULDERS/FILL/TOPSOIL] then SOIL NAME: plasticity / primary particle characteristics, colour, secondary and minor components, zoning (origin) and ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects	Aoisture Condition	Consistency / Density Index	Comments/ Observations
	<i>p</i> 11	-Washbore D	HWT casing	~	0 SPT 10/31/19 N=ref	10.58		SP	SAND: as previous. SAND: medium to coarse grained, grey, with shell fragments (marine).	× W	VD VD	
	13 14 15	e stan		sheets	SPT 13/24/26 N=ref		GH	2		J	ob N	- - - - - - - - - - - - - - - - - - -
	Se det & k	ee standard sheets for etails of abbreviations basis of descriptions GHD Level 3, GHD Tower, 24 Honeysuckle Drive, Newcastle 2300 Australia T: +61 2 4979 9999 F: +61 2 4979 9988 E: ntlmail@ghd.com CONSULTING GEOTECHNICAL ENGINEERS AND GEOLOGISTS									ob N 1	^{io.} 12545790

BO	REHOL	.E LOC	3 SHE	ET							
Cli	ent :	Port	of Ne	wcastle				HOLE N	0.	GE	BH3
Pro	oject :	Prop) osed (Commercia	al Develo	opment	t at Can		0.	SHEE	
Po	sition :	<u>46 F</u> 384	413 1 F	E 6357124	9 N N	I Stree	<u>x, Carr</u> 20/ 56	Surface RI : 2.05m AHD Angle from Horiz : 90	0		Processed · SBO
Rig	y Type	: Scou	ut	Mc	ounting	: Truck	(Contractor : Total Drilling Pty Ltd Driller : Glen Gearside			Checked : SJM
Da	te Star	t ed : 2	2/2/20)21		Da	te Con	npleted : 22/2/2021 Logged by : Nick Leaver			Date: 03/03/2021
		DRILL	ING					MATERIAL			Note: * indicates signatures on origina issue of log or last revision of log
				1	+						
SCALE (m)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth metres	Graphic Log	DISC Symbol	Description [COBBLES/BOULDERS/FILL/TOPSOIL] then SOIL NAME: plasticity / primary particle characteristics, colour, secondary and minor components, zoning (origin) and ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects	Moisture Condition	Consistency / Density Index	Comments/ Observations
-	Washbore	HWT casing		U50	15.55		SP	SAND: as previous. Sandy CLAY: medium plasticity, grey to dark grey, medium grained sand, with shell fragments up to 1mm (estuarine).	M	VD	Vs=113kPa Peak
- 16 - - - - - - - - - - - - - - - - - - -								End of borehole at 16.00 metres. Target Depth			
- - - - - 20 ¹ Se de	e stan	dard s	sheets	s for ons		GHI Level T: +(D 3, GHI 51 2 49	D Tower, 24 Honeysuckle Drive, Newcastle 2300 Australia 79 9999 F: +61 2 4979 9988 E: ntlmail@ghd.com	J	ob N	lo.

ВО	REHOL	E LOG	SHEE	T							
Cli Pr/	ent: piect:	Port	of New	vcastle		nment	ŀ	HOLE N	0.	GB	8H4
Lo	cation :	46 F	itzroy S	Street / 65	Deniso	n Stree	et, Carr	ington NSW		SHEE	T 1 OF 4
Po	sition :	3844	124.9 E	6357090.	ON N	1GA202	20/ 56	Surface RL: 2.10m AHD Angle from Horiz. : 90	,		Processed : SBO
Riç	g Type :	Scou	t	Мо	unting	Truck		Checked : SJM			
Da	te Start	ed : 2	3/2/202	21		Dat	te Con	Impleted : 23/2/2021 Logged by : Nick Leaver			Date: 03/03/2021
		DRILL	ING					MATERIAL			issue of log or last revision of log
	hod	ť		Tests		5	lc		ndition	×∈ عد	Comments/ Observations
SCALE (m)	Drilling Meth	Hole Suppo \ Casing	Water	Samples &	Depth metres	Graphic Loç	USC Symbo	SOIL NAME: plasticity / prinary particle characteristics, colour, secondary and minor components, zoning (origin) and ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects	Moisture Co	Consistency Density Inde	
- - - - - - - - - 1	A		23/Ž/21	SPT 5/4/6 N=10	0.12			[TOPSOIL/FILL]: Silty SAND: fine to medium grained, brown, rootlets down to 120mm. [FILL]: SAND: medium grained, brown to pale grey, trace shell fragments and fine gravel.	M	_	
-					1.20			[FILL]: Sandy CLAY: low plasticity, brown to dark grey, fine grained gravel up to 7mm, trace organic matter.	W		
- -	Auger	Nil –	,	ASS+SPT 1/1/6 N=7	1.55		CI	Gravelly CLAY: medium plasticity, brown to dark grey, shell and gravel up to 7mm, trace organic matter (estuarine?).	W	F	
-2 - - - - -							SP	SAND: medium to coarse grained, pale grey, with shell fragments (marine). 2.35m, becoming grey.	W	D	
- -3 - -				SPT 2/1/2 N=3	3.35		CI	Clayey SAND/Sandy CLAY: medium plasticity, dark grey, fine	W	MD S-F	
	Å				3.80		SC	Clayey SAND: fine to medium grained, dark grey (estuarine).	W	MD	
-4 - -	ashbore	/T casing			4.20		SP	SAND: medium grained, pale grey, trace shell fragments (marine).	W	MD- D	
- - -	- M	УН		SPT 4/6/6 N=12	4.60		SP	SAND: medium grained, dark grey, trace shell fragments of gravel size and clay (marine).	W	MD	
-5 Se de & I	See standard sheets for details of abbreviations Chapter 12: +61 2 4979 9999 Chapter 24: Honeysuckle Drive, Newcastle 2300 Australia T: +61 2 4979 9999 C: +61 2 4979 9988 C: ntlmail@ghd.com C: +61 2 4979 9998 C: ntlmail@ghd.com C: +61 2 4979 9998 C: +61 2 4979 9998 C: +61 2 4979 9988 C: ntlmail@ghd.com C: +61 2 4979 9998 C: +61 2 4979 9988 C: +61 2 4978 C: +61 2 4										

	BOREHOLE LOG SHEET												
12/01	Client : Port of Newcastle HOLE No. GBH4											3H4	
	Locati	נ: on:	46 F	-	SHEET 2 OF 4								
	Positic	on :	384	424.9 E	E 6357090.	.0 N N	1GA202	20/ 56	Surface RL: 2.10m AHD Angle from Horiz.: 90		-	Processed : SBO	
	Rig Ty	pe :	Scoi	ut	Мс	ounting	Truck		Contractor : Total Drilling Pty Ltd Driller : Glen Gearside			Checked : SJM	
	Date S	tarte	ə d : 2	23/2/20	21		Daf	te Con	npleted : 23/2/2021 Logged by : Nick Leaver			Date: 03/03/2021	
	DRILLING MATERIAL											Note: * indicates signatures on original issue of log or last revision of log	
	SUALE (III) Drilling Mathod		Hole Support \ Casing	Water	Samples & Tests	Depth metres	Graphic Log	USC Symbol	Description [COBBLES/BOULDERS/FILL/TOPSOIL] then SOIL NAME: plasticity / primary particle characteristics, colour, secondary and minor components, zoning (origin) and ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects	Moisture Condition	Consistency / Density Index	Comments/ Observations	
	+					5.20		SP	SAND: as previous.	W	MD		
	5 7 8				SPT 16/21/20 N=41	5.20		SP	SAND: medium to coarse grained, grey, with shells and shell fragments (marine).	w	D		
						8.40		CH	Clayey SAND/Sandy CLAY: high plasticity, dark grey, fine grained sand, with small shell fragments (estuarine). SAND: medium grained, grey, with small shell fragments present (marine).	W	F/D D		
	€					8.95		SC	Clayey SAND: fine grained, grey/dark grey (marine).	W		-	
	See standard sneets for details of abbreviations Child & basis of descriptions Level 3, GHD Tower, 24 Honeysuckle Drive, Newcastle 2300 Australia T: +61 2 4979 9999 F: +61 2 4979 9988 E: ntlmail@ghd.com CONSULTING GEOTECHNICAL ENGINEERS AND GEOLOGISTS										12545790		
В	DREHO		G SHE	ET									
----------------	------------------------------	----------------------------	-------------------------------	-------------------------	-----------------	-----------------------	--------------------------------	--	-------------	-----------------------------	---		
CI	ient :	Port	t of Nev	wcastle				HOLE N	0	GB	RHA		
Pr	oject :	Prop	posed (Commercia	I Develo	opment	t A Com		0.		T 3 OF 4		
	sition	: 46 F : 384	-112roy 424.9 E	5 6357090.	0 N N	n Stree IGA202	$\frac{1}{20/56}$	Surface RL: 2 10m AHD Angle from Horiz.: 90	•		Processed : SBO		
Ri	g Type	: Scol	 ut	Mc	ounting	: Truck		Contractor : Total Drilling Pty Ltd Driller : Glen Gearside			Checked : SJM		
Da	te Star	ted : 2	23/2/20	21		Daf	te Con	npleted : 23/2/2021 Logged by : Nick Leaver			Date: 03/03/2021		
		DRILL	ING					MATERIAL			Note: * indicates signatures on origina issue of log or last revision of log		
	pou	Ľ		Tests			0		ondition	y/ ex	Comments/ Observations		
SCALE (m)	Drilling Meth	Hole Suppo \ Casing	Water	Samples &	Depth metres	Graphic Loo	USC Symbo	SOIL NAME: plasticity / primary particle characteristics, colour, secondary and minor components, zoning (origin) and ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects	Moisture Co	Consistency Density Inde			
_					10 15	///	SC	Clayey SAND: as previous.	W				
					10.10		SP	SAND: medium to coarse grained, grey, with shell fragments (marine).	W	VD			
-				SPT 8/23/27 N=ref				From 10.59-10.64m, layer of shell fragments (shell hash). At 10.64m, becoming pale grey.					
- 11 - -													
-													
- - - 12													
-	ore	sing											
-	Washb												
- - 13 -											-		
-				SPT									
-				N=ref									
- 14 - -													
- - -													
Se de &	e stan tails o basis (dard s f abbr of des	sheets eviation criptic	for ons ons	HD	GHI Level T: +6) 3, GHE 31 2 497	D Tower, 24 Honeysuckle Drive, Newcastle 2300 Australia 79 9999 F: +61 2 4979 9988 E: ntlmail@ghd.com	J	ob N 1	^{Io.} 12545790		

Client : Project : Location Position : Rig Type Date Star	Port Prop : 46 F : 3844 : Scou ted : 2	t of Nev posed (=itzroy 424.9 E	wcastle Commercia Street / 65	al Develo	pment	t	HOLE NO	0.	GB	Н4
Location Position : Rig Type Date Star	: 46 F : 384 : Scou ted : 2	Fitzroy 424.9 E	Street / 65		pinein					/ I I - T
Position : Rig Type Date Star	: 384 : Scou ted : 2	424.9 E	01001/00	Denisor	h Stree	t Carri	noton NSW		SHEE	T 4 OF 4
Rig Type Date Star	: Scou rted : 2		E 6357090.	0 N M	GA202	0/ 56	Surface RL: 2.10m AHD Angle from Horiz. : 90°	,	-	Processed : SBO
Date Star	ted: 2	ut	Мо	ounting:	Truck		Contractor : Total Drilling Pty Ltd Driller : Glen Gearside			Checked : SJM
		23/2/20	21		Dat	te Com	pleted : 23/2/2021 Logged by : Nick Leaver			Date: 03/03/2021
	DRILL	.ING					MATERIAL			Note: * indicates signatures on origin issue of log or last revision of log
1							_			
Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth metres	Graphic Log	USC Symbol	Description [COBBLES/BOULDERS/FILL/TOPSOIL] then SOIL NAME: plasticity / primary particle characteristics, colour, secondary and minor components, zoning (origin) and ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects	Moisture Condition	Consistency / Density Index	Comments/ Observations
91 ——Washbore —				15.85		SP	SAND: as previous. CLAY: medium plasticity, grey.	M	VD	Vs=116kPa Peak
17			050	16.40			End of borehole at 16.40 metres. Target Depth			
18										
19										
20 ¹		I		1						
See stan	idard s	sheets	for 🛛		GHI		Tower 24 Hoppypulde Drive News-sta 2200 A. L. L	J	ob N	0.
details of 8 basis (f abbro	eviatio	ons C	HD	T: +6	9 9999 F: +61 2 4979 9988 E: ntlmail@ghd.com		1	2545790	

_E	BOF	REHOL	E LOO	3 SHE	ET							
(3/21	Clie	ent:	Port	of Nev	wcastle	-	_	_	HOLE N	0_	GB	H5
5 I	Proj	Ject :	Prop 46 B) osed	Commercia Street / 65	I Develo	opment	t ot Corr	ington NSW	 5		1 OF 14
19.00 19.00	Pos	ition .	384	463.9 F	= 6357114	1 N M	IGA202	$\frac{1}{20}/56$	Surface RI : 2.18m AHD Angle from Horiz : 90	•		Processed · SBO
- ₽ ₽	Rig	Type	Scou		Mo	ounting:	Truck	(Contractor : Total Drilling Ptv Ltd Driller : Glen Gearside			Checked : SJM
APLA	Dat	e Start	ed: 1	/3/202	21		Da	te Con	npleted : 3/3/2021 Logged by : Nick Leaver			Date: 11/03/2021
				ING					MATERIAI			Note: * indicates signatures on origina issue of log or last revision of log
9 9 9					T						_	
	SUALE (III)	Drilling Method	Hole Support	Water	Samples & Tests	Depth metres	Graphic Log	USC Symbol	Description [COBBLES/BOULDERS/FILL/TOPSOIL] then SOIL NAME: plasticity / primary particle characteristics, colour, secondary and minor components, zoning (origin) and ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects	Moisture Condition	Consistency / Density Index	Comments/ Observations
- ENIS		<u> </u>	Ī			0.12	4.4	-	30mm, rebar at 60mm, 7mm diameter.	-	-	
06		Ĩ	1			0.16		<u> </u>	NO CORE: Void at 0.04m.	<u> -</u>	<u>}-</u> 1	
BOREHOLE_AS1726_2017_1254579	1		6						 [FILL]: SAND: medium grained, dark grey, with fine to medium gravel, lightly cemented. [FILL]: SAND: medium grained, brown, with fine gravel, traces of shells and shell fragments. 1.0m, becoming dark grey. 	M	?	-
GEO		e L	asing			1.20	\bigotimes					
	2		HWT ca	3/1721		1.30		CI	Sandy CLAY: medium plasticity, dark grey (estuarine). SAND: fine to medium grained, grey/brown, trace shell/shell fragments (marine).	M M W	-	-
	3		- T			2.50		SP	SAND: medium grained, pale grey, with fines, traces of organic matter (marine).	W		-
	4	Washbore				3.20		SC	Clayey SAND: fine to medium grained, dark grey, trace of fine grained gravel, trace of shell fragments (marine/estuarine?).	W		
	See det & b	e stand ails of basis c	dard s abbr	heets eviatio	for ons ons	HD	GHI Level T: +6	D 3, GHE 31 2 497	D Tower, 24 Honeysuckle Drive, Newcastle 2300 Australia 79 9999 F: +61 2 4979 9988 E: ntlmail@ghd.com NG GEOTECHNICAL ENGINEERS AND GEOLOGISTS	J	ob N 1	lo. 12545790

_	BO	REHOL	E LO	G SHE	ET							
3/21	Clie	ent :	Por	of Nev	wcastle				HOLE N	0	GB	SH5
T 31/	Pro	ject :	Pro	oosed (Commercia	l Devel	opment			۰. د		
0.60			384	-itzroy	Street / 65		n Stree	$\frac{1}{2}$, Carr		。 。		Processed : SBO
ц Ц	Rin	Type	· Scol	403.9 E	<u> </u>	unting	· Truck	0/ 50	Contractor : Total Drilling Pty Ltd Driller : Glen Gearside			Checked : SIM
FLA -	Dat	e Star	ted · 1	/3/202	1	unung	Dat	e Con	noleted : 3/3/2021			Date: 11/03/2021
	Dut	o otar					Bu					Note: * indicates signatures on original
о' 				ING	1							issue of log of last revision of log
N SI CARRINGION.GPJ GHD	SCALE (m)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth metres	Graphic Log	USC Symbol	Description [COBBLES/BOULDERS/FILL/TOPSOIL] then SOIL NAME: plasticity / primary particle characteristics, colour, secondary and minor components, zoning (origin) and ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects	Moisture Condition	Consistency / Density Index	Comments/ Observations
	6 7 9					8.90		SC	Clayey SAND: as previous.	M		
F	10 ^L		I	L		I			I	L	I	
	See	e stan	dard s	sheets	for		GHI)		J	ob N	lo.
	det & b	ails of asis o	f abbr of des	eviatio criptic	ons C	HD	Level T: +6 CON	3, GHL 1 2 497 SULTII	79 9999 F: +61 2 4979 9988 E: ntlmail@ghd.com NG GEOTECHNICAL ENGINEERS AND GEOLOGISTS		1	12545790

Client : Port of Newcastle 31/3/21 HOLE No. GBH5 Project : Proposed Commercial Development SHEET 3 OF 14 TEMPLATE 2.00.GDT Location : 46 Fitzroy Street / 65 Denison Street, Carrington NSW Position : 384463.9 E 6357114.1 N MGA2020/56 Surface RL: 2.18m AHD Angle from Horiz. : 90° Processed : SBO Rig Type : Scout Mounting: Truck Contractor: Total Drilling Pty Ltd Driller : Glen Gearside Checked : SJM Logged by : Nick Leaver Date Started : 1/3/2021 Date Completed : 3/3/2021 Date: 11/03/2021 ote: * indicates signatures on origi issue of log or last revision of log DRILLING MATERIAL BOREHOLE AS1726 2017 12545790 DENISON ST CARRINGTON.GPJ GHD GEO Description Comments/ Moisture Condition Samples & Tests Observations **Drilling Method** Consistency / Density Index Hole Support \ Casing [COBBLES/BOULDERS/FILL/TOPSOIL] then JSC Symbol Graphic Log SCALE (m) SOIL NAME: plasticity / primary particle characteristics, colour, secondary and minor components, zoning (origin) and Depth metres Water ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects CI CLAY: as previous. Μ 10.50 SP SAND: fine to medium grained, dark grey, with shell D-VD W fragments, trace fine gravel (marine). 11 GEO 12 Washbore 13 14 15 Job No. GHD See standard sheets for Level 3, GHD Tower, 24 Honeysuckle Drive, Newcastle 2300 Australia T: +61 2 4979 9999 F: +61 2 4979 9988 E: ntlmail@ghd.com GHD details of abbreviations 12545790 & basis of descriptions CONSULTING GEOTECHNICAL ENGINEERS AND GEOLOGISTS

BOREHOLE LOG SHEET

во	REHOL	E LOO	SHEE	ET							
Cli	ent :	Port	of Nev	wcastle				HOLE N	0	GB	BH5
Pro	oject :	Prop	oosed (Commercia	l Develo	opment	t t		۰. ،		
	cation :	384		Street / 65		n Stree	$\frac{1}{20}$	Surface PL: 2.18m AHD Angle from Horiz: 00	, ,		
Ric	1 Type	Scol	+03.3 L	. 0337114. Mo	unting		20/ 30	Contractor : Total Drilling Ptv I td Driller : Glen Gearside			Checked : SIM
Dat	te Starl	ed · 1	/3/202	1	unung.	Dat	te Con	noleted : 3/3/2021			Date: 11/03/2021
			NO			Du					Note: * indicates signatures on origina
		DRILL	ING					MATERIAL			issue of log of last revision of log
SCALE (m)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth metres	Graphic Log	USC Symbol	Description [COBBLES/BOULDERS/FILL/TOPSOIL] then SOIL NAME: plasticity / primary particle characteristics, colour, secondary and minor components, zoning (origin) and ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects	Moisture Condition	Consistency / Density Index	Comments/ Observations
- 16					16.35		SP	SAND: as previous. CLAY: high plasticity, dark grey, with fine to medium grained sand (estuarine).	W	D- VD	
- - - 17 - - - - - - - -	Washbore				17.90						
- 18 - 19 - 19 -					17.90		CH	CLAY: high plasticity, dark grey (estuarine). 19.0m, becoming pale grey. 19.2-19.27m, becoming harder.	М		
Se det & t	e stan tails of basis c	dard s abbro	heets eviatic criptio	for ons ons	HD	GHI Level T: +6 CON	D 3, GHE 61 2 497) Tower, 24 Honeysuckle Drive, Newcastle 2300 Australia '9 9999 F: +61 2 4979 9988 E: ntlmail@ghd.com NG GEOTECHNICAL ENGINEERS AND GEOLOGISTS	J	ob N	^{io.} 12545790

BOREHOLE LOG SHEET Client : Port of Newcastle 31/3/21 HOLE No. GBH5 Project : Proposed Commercial Development SHEET 5 OF 14 TEMPLATE 2.00.GDT Location : 46 Fitzroy Street / 65 Denison Street, Carrington NSW Position : 384463.9 E 6357114.1 N MGA2020/56 Surface RL: 2.18m AHD Angle from Horiz. : 90° Processed : SBO Rig Type : Scout Mounting: Truck Contractor: Total Drilling Pty Ltd Driller : Glen Gearside Checked : SJM Logged by : Nick Leaver Date Started : 1/3/2021 Date Completed : 3/3/2021 Date: 11/03/2021 ote: * indicates signatures on origi issue of log or last revision of log DRILLING MATERIAL BOREHOLE AS1726 2017 12545790 DENISON ST CARRINGTON.GPJ GHD GEO Description Comments/ Moisture Condition Samples & Tests Observations Drilling Method Consistency / Density Index Hole Support \ Casing USC Symbol [COBBLES/BOULDERS/FILL/TOPSOIL] then Graphic Log SCALE (m) SOIL NAME: plasticity / primary particle characteristics, colour, secondary and minor components, zoning (origin) and Depth metres Water ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects CH CLAY: as previous. Μ 20.40 CLAY: high plasticity, dark grey, traces of fine to medium gravel up to 50mm, traces of shell fragments (estuarine). CH Μ 21 GEO 22 Washbore 23 24 25 Job No. GHD See standard sheets for Level 3, GHD Tower, 24 Honeysuckle Drive, Newcastle 2300 Australia T: +61 2 4979 9999 F: +61 2 4979 9988 E: ntlmail@ghd.com GHD details of abbreviations 12545790 & basis of descriptions CONSULTING GEOTECHNICAL ENGINEERS AND GEOLOGISTS

BOREH	IOLE LOO	SHEET								
Client :	Port	of Newcas	stle					0.	GB	SH5
Project	t: Prop	oosed Com	nmercial	Develo	opment	t Carri		۰. s		6 OF 14
Positio	n: 384	463.9 E 63	357114.1	N M	GA202	0/ 56	Surface RL: 2.18m AHD Angle from Horiz.: 90	,		Processed : SBO
Rig Typ	be: Scou	ıt	Mou	inting:	Truck		Contractor : Total Drilling Pty Ltd Driller : Glen Gearside			Checked : SJM
Date St	tarted: 1	/3/2021			Dat	e Com	pleted : 3/3/2021 Logged by : Nick Leaver			Date: 11/03/2021
1	DRILL	ING					MATERIAL			Note: * indicates signatures on original issue of log or last revision of log
thod	oort		& Tests		bo	bol	Description [COBBLES/BOULDERS/FILL/TOPSOIL] then	Condition	cy / dex	Comments/ Observations
SCALE (n Drilling Me	Hole Supp \ Casing	Water	Samples	Depth metres	Graphic L	USC Sym	SOIL NAME: plasticity / primary particle charactenstics, colour, secondary and minor components, zoning (origin) and ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects	Moisture (Consisten Density In	
				26.00		СН	CLAY: as previous.	Μ		-
-26 - - - - - -				26.00		CL	CLAY: low plasticity, dark grey, with fine grained sand (estuarine).	M		-
- 27 										-
- -28 - - - - - - - - - -										-
- 29 										-
See sta details & basis	andard s of abbr s of des	heets for eviations criptions	G	Ð	GHE Level T: +6 CON) 3, GHD 1 2 497 SULTIN	9 Tower, 24 Honeysuckle Drive, Newcastle 2300 Australia 9 9999 F: +61 2 4979 9988 E: ntlmail@ghd.com NG GEOTECHNICAL ENGINEERS AND GEOLOGISTS	J	ob N 1	lo. 12545790

BORE	HOL	E LOG	SHE	ET							
Clien	t:	Port	of Nev	wcastle					0.	GB	BH5
	ct: tion ·	Prop	itzrov	Commercia Stroot / 65	I Develo	opment	t At Carri		د		Γ 7 OF 14
Posit	ion :	3844	63.9 E	E 6357114.	1 N N	IGA202	20/ 56	Surface RL: 2.18m AHD Angle from Horiz. : 90'	,		Processed : SBO
Rig T	ype :	Scou	t	Мо	unting	Truck		Contractor : Total Drilling Pty Ltd Driller : Glen Gearside			Checked : SJM
Date	Start	ed: 1/	/3/202	1		Dat	te Con	npleted : 3/3/2021 Logged by : Nick Leaver			Date: 11/03/2021
	I	DRILLI	NG					MATERIAL			Note: * indicates signatures on original issue of log or last revision of log
	q		_	sts				Description	dition		Comments/ Observations
SCALE (m)	Drilling Metho	Hole Support \ Casing	Water	Samples & Te	Depth metres	Graphic Log	USC Symbol	[COBBLES/BOULDERS/FILL/TOPSOIL] then SOIL NAME: plasticity / primary particle characteristics, colour, secondary and minor components, zoning (origin) and ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects	Moisture Con	Consistency / Density Index	
							CL	CLAY: as previous.	М		
-31 - - - - - -					31.00		CI	CLAY: medium plasticity, dark grey, traces of fine grained sand (estuarine).	М		
- 32 - - - - - -											
- 33 - - - - - - -											
- 34 											-
See s detai & ba	ee standard sheets for stails of abbreviations basis of descriptions					GHI Level T: +6 CON	D 3, GHD 31 2 497 SULTII) Tower, 24 Honeysuckle Drive, Newcastle 2300 Australia 79 9999 F: +61 2 4979 9988 E: ntlmail@ghd.com NG GEOTECHNICAL ENGINEERS AND GEOLOGISTS	J	ob N	^{lo.} 12545790

_	BORE	IOLI	E LOG	SHE	ET							
	lient	:	Port	of Ne	wcastle					0	GB	H5
	Projec	t :	Prop	osed (Commercia	l Devel	opment	t 		ی .		
	ocati	on:	46 F		Street / 65		n Stree	et, Carr	Surface PL 2.19m AUD Angle from Horiz : 00	, c		Brosssad : SPO
		n :	Scou	+03.9 E +	- 0357114. Mo		· Truck	0/ 50	Contractor : Total Drilling Pty Ltd Driller : Glen Gearside			Checked : SIM
	ay iy ate S	pe . tarte	ocou 1 • hد	1 13/202	1	unung	Dat	te Con	noleted · 3/3/2021			Date: 11/03/2021
H		-					Du					Note: * indicates signatures on original
2			RILL	ING					MATERIAL			issue of log of last revision of log
	Drilling Method	5	Hole Support \ Casing	Water	Samples & Tests	Depth metres	Graphic Log	USC Symbol	Description [COBBLES/BOULDERS/FILL/TOPSOIL] then SOIL NAME: plasticity / primary particle characteristics, colour, secondary and minor components, zoning (origin) and ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects	Moisture Condition	Consistency / Density Index	Comments/ Observations
	6 6 77					36.40		CI	CLAY: as previous.	M		
Ļ	.0											
	See st	and	ard s	heets	for		GHI	D		J	ob N	lo.
	letails	s of	abbre	eviatio	ons (C	ШĎ	Level T: +6	3, GHE 31 2 497	9 I ower, 24 Honeysuckle Drive, Newcastle 2300 Australia 79 9999 F: +61 2 4979 9988 E: ntlmail@ghd.com		4	2545790
1	k bas	s of	desc	criptio	ons 🛛 🗋		CON	SULTI	NG GEOTECHNICAL ENGINEERS AND GEOLOGISTS		I	

-	во	REHOL	E LO	g shei	ET							
13/21	Cli	ent :	Port	of Nev	wcastle					0	GP	H5
31,	Pro	oject :	Pro	oosed (Commercia	al Devel	opment	+ 0		.		9 OF 14
U.G.D	LO	cation :	384	-itzroy	Street / 65		n Stree	t, Carr		• •		9 OF 14
- i -	Ric	a Type :	: Scoi	100.0 L		untina	: Truck	0,00	Contractor : Total Drilling Ptv Ltd Driller : Glen Gearside			Checked : SJM
MPLA	Dat	te Star	ted: 1	/3/202	1	<u> </u>	Dat	e Con	npleted : 3/3/2021 Logged by : Nick Leaver			Date: 11/03/2021
			DRILL	ING					MATERIAL			Note: * indicates signatures on original issue of log or last revision of log
<u>ו</u> פ פ									–			
	SCALE (m)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth metres	Graphic Log	USC Symbol	Description [COBBLES/BOULDERS/FILL/TOPSOIL] then SOIL NAME: plasticity / primary particle characteristics, colour, secondary and minor components, zoning (origin) and ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects	Moisture Condition	Consistency / Density Index	Comments/ Observations
	-41	Washbore						CI	CLAY: as previous.	М		
	-45											-
	Se def & t	ee standard sheets for etails of abbreviations basis of descriptions				HD	GHE Level T: +6 CONS) 3, GHE 1 2 497 SULTII) Tower, 24 Honeysuckle Drive, Newcastle 2300 Australia 79 9999 F: +61 2 4979 9988 E: ntlmail@ghd.com NG GEOTECHNICAL ENGINEERS AND GEOLOGISTS	J	ob N 1	o. 1 2545790

BC	DREHO	E LOC	SHEE	Т							
Cl	ient :	Port	of New	castle				HOLE N	0	GB	SH5
	oject :	Prop	oosed C	ommercia	I Develo	opment	t Com				10 OF 14
	sition .	. 40 r 3844	463.9 F	6357114	1 N M	IGA202	0/56		,		Processed · SBO
Ri	g Type	: Scol	t	Mo	untina	: Truck		Contractor : Total Drilling Ptv Ltd Driller : Glen Gearside			Checked : SJM
Da	te Star	ted : 1	/3/2021			Dat	e Con	npleted : 3/3/2021 Logged by : Nick Leaver			Date: 11/03/2021
		י וואם									Note: * indicates signatures on origina issue of log or last revision of log
SCALE (m)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth metres	Graphic Log	USC Symbol	Description [COBBLES/BOULDERS/FILL/TOPSOIL] then SOIL NAME: plasticity / primary particle characteristics, colour, secondary and minor components, zoning (origin) and ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects	Moisture Condition	Consistency / Density Index	Comments/ Observations
46					46.90		CI	CLAY: as previous.	M		
- 47 - 47 - 48 -	Washbore				10.00		CI	CLAY: medium plasticity, dark grey, with fine to medium grained gravel, traces of fine to medium grained sand (estuarine?/possible residual?).	M		
- - - - - 50 Se g	ee stan tails o	dard s	heets t	for ns	49.10	GHI T: +6	- 3, GHD 1 2 497	SILTSTONE AND SANDSTONE: fine grained sandstone, dark grey, extremely weathered.	- J	ob N	lo. 12545790

В	OREHO	LE LOO	g she	ET							
	ient :	Port	of Ne	wcastle					0.	GB	SH5
5 Pr	oject :	• 46 F	posed (Fitzrov	Commercia Street / 65	Deniso	opment n Stree	t et Carr	ington NSW	SF	IEET	11 OF 14
PC	sition :	384	463.9 E	E 6357114.	1 N N	1GA202	20/ 56	Surface RL: 2.18m AHD Angle from Horiz. : 90'	,		Processed : SBO
Ri	g Type	: Scou	ut	Мо	unting	: Truck		Contractor : Total Drilling Pty Ltd Driller : Glen Gearside			Checked : SJM
Da	ate Star	ted : 1	/3/202	1		Dat	te Con	npleted: 3/3/2021 Logged by : Nick Leaver			Date: 11/03/2021
		DRILL	ING					MATERIAL			Note: * indicates signatures on origina issue of log or last revision of log
								D escription			
SCALE (m)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth metres	Graphic Log	USC Symbol	Description [COBBLES/BOULDERS/FILL/TOPSOIL] then SOIL NAME: plasticity / primary particle characteristics, colour, secondary and minor components, zoning (origin) and ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects	Moisture Condition	Consistency / Density Index	Comments/ Observations
-	 Washbore — 				50.65		-	SILTSTONE AND SANDSTONE: as previous.	-	-	
- 51 - 51 								Start of coring at 50.65 metres. For cored interval, see Core Log Sheet.			
- - 55											
S	e stan	dard s	sheets	for	\sim	GHI	D		J	ob N	lo.
de &	etails o basis o	f abbr of des	eviatio criptic	ons C		1	12545790				

00	DRE	LOC	g she	ET											
Cli	ent	:	Por	t of N	vewc	astle					н	10	LE	ΞN	o. GBH5
Lo	cati	on:	Pro 46	pose Fitzra	a Co ov Sti	mmerc reet / 6	iai De 5 Dei	nison Street Carrington NSW							SHEET 12 OF 14
Po	sitic	n :	384	463.9	9 E 6	635711	4.1 N	MGA2020/ 56 Surface RL: 2.18m	AHD		Angle fron	n H	oriz	.:90	° Processed : SBO
Ri	д Ту	pe :	Sco	ut		M	ount	ing: Truck Contractor : Total Drilling	Pty Lt	d	Driller : Gl	en	Gea	rside	Checked : SJM
Са	sing	j Dia	a.: '	114m	nm/90)mm B	arrel	(m): 3.0m Bit: Step 7			Bit Conditio	n :	Go	od	Date: 11/03/2021
Da	te S	tart	ed : 1	1/3/2	021	D	ate C	Completed : 3/3/2021 Logged by : Nick Leave	er		Date Logge	: 1	11/:	3/202	1 Note: * indicates signatures on original issue of log or last revision of log
		DRI	LLING	G	1			MATERIAL		_				N	
SCALE (m)	Drilling & Casing	Water 8	Drill Depth (m)	(Core Loss / Run %)	RQD (%)	Depth metres	Graphic Log	Description ROCK NAME: grain size, colour, fabric and texture, inclusions or minor components, moisture, durability and [COBBLES / BOULDERS / FILL / TOPSOIL] then SOIL NAME: colour, plasticity / primary particle characterist secondary and minor components, zoning (origin)	ہ Weathering		Estimated Strength Is ₍₅₀₎ MPa ^{•-Axial} ^{0-Diametral}	20	(mi	2000 m)	Additional Data (joints, partings, seams, zones and veins) Defect type: orientation, roughness and shape, composition or coating, aperture and thickness, other.
- - - - - - - - - - - - - - - - - - -	Step 7 + HQ casing		53.65	(0)		.50.65		Start of coring at 50.65 metres. For Non Cored interval, see Borehole Log Sheet. INTERLAMINATED TO INTERBEDDED SANDSTONE (30%) AND SILTSTONE (30%) sandstone is fine to medium grained, pale grey to grey, indistinctly bedded at 0-15°, siltstone i dark grey, closely to widely spaced tuff, pale brown to dark brown, thickness up to 80mm thick. 50.95m, tuff, pale brown. 51.2m, geophysics: hole caving in. 52.3-52.6m, geophysics: increase in natural gamma. 52.57m, distinct/abrupt transition from siltston to sandstone. From 53.7-54.1m, geophysics: hole caving.	: / SV 3 SV 	r					-50.73m, Pt, 0°, So, Pln, Cn -50.93m, Jt, 60°, So, Pln, Cn -51.02m, Pt, 0°, So, Pln, Cn -51.07m, Fracture (subsidence?), 70°, So, Pln, Cn -51.29m, Pt, 0°, I?, Un, Cn -51.7m, Pt, 5°, Rf, Un, Cn -51.92m, Pt, 5°, So, Pln, Cn -51.92m, Pt, 5°, So, Pln, Cn -52.58m, Fracture (subsidence?), 70° to ENE, Rf, Pln, Cn -52.65m, Pt, 10°, Rf, Pln, Coal? -53.6m, Fracture (subsidence?), So, Pln, Cn -54.12m, Pt, 10°, Rf, Un, Cn
- - - - - - - -								54.35m, tuff, brown, hard, distinct/abrupt transition from siltstone to sandstone.	F	r					-54.88m, Fracture (subsidence?), 75° to ENE, So, Pin, Cn
Se de &	55 See standard sheets for details of abbreviations Level 3, GHD Tower, 24 Honeysuckle Drive, Newcastle 2300 Australia T: +61 2 4979 9999 F: +61 2 4979 9988 E: ntlmail@ghd.com Level 3, GHD Tower, 24 Honeysuckle Drive, Newcastle 2300 Australia T: +61 2 4979 9999 F: +61 2 4979 9988 E: ntlmail@ghd.com 12545790														

	ore l	.00	5 SHE	ET																
CI Pr	ient : oiect	:	Port Pro	t of N	lewc d Co	astle mmerc	ial De	evelopment					F	10	LE	N	o. GE	H5		
Lo	ocatio	n:	46 F	-itzrc	y Sti	reet / 6	5 Der	nison Street, Carringt	on NSW								SHEET	13 OF 14	Ļ	
Po	ositio	n :	384	463.9	9 E 6	357114	4.1 N	MGA2020/ 56	Surface RL:	2.18m A	HD		Angle from	n H	oriz. :	90°)	Process	ed: SBO	
Ri	д Тур	e:	Scou	ut		Μ	ount	ing: Truck	Contractor :	Total Drilling F	Pty Ltd		Driller : G	len	Gears	ide		Checked	I: SJM	
Ca	asing	Dia	1.: 1	14m	m/90	Dmm B	arrel	(m): 3.0m	Bit : Step 7			B	Bit Conditio	n:	Good	1	4	Date: 1	1/03/2021 signatures on origina	
	ate St	arte		/3/20)21	D	ate C	completed : 3/3/2021		: NICK Leave	r	D	Date Logge	a : 	11/3/	202			last revision of log	
Pr	L			,					escription			F		5	Snacij	או חמ		Additiona	⊑o I Data	
E (m)	Casing		th (m)	ss / Run %			Log	ROCK NAME: grain inclusions or minor [COBBLES / BOU	a size, colour, fabri components, mois and LDERS / FILL / TC	c and texture, ture, durability PSOIL] then	ing		Strength Is ₍₅₀₎ MPa		(mm))	(joints Defec	, partings, sea veins type: oriental	ms, zones and) ion, roughness	
SCAL	Drilling 8	Water	Drill Dep	(Core Lo	RQD (%)	Depth metres	: Graphic	SOIL NAME: colour, plas secondary and mir	ticity / primary part for components, z	Cle characteristic oning (origin)	Weather	Soil 0.03		20	900 900	1000	ape	rture and thick	kness, other.	
- - - - - - - 56				(0)				55.6m, distinct tuff siltstone sequence	bed ~40mm the sed ~40mm the sed ~40mm the sed ~40mm the sed set of the set of	nick in sequence.							-55.67m, Pt, CLAY	~10-15° to W	, So, Pln,	
-			6.65				· · · · · · · · · · · · · · · · · · ·	From 56.54-26.84 caving.	m, geophysics:	minor hole	Fr						-56.32m, Pt,	Rf, Un, Cn Rf, Pln, Cn		
- - 57 - - -	r + HQ casing						· · · · · · · · · · · · · · · · · · ·						•				-56.91m, ~6 (subsidence 56.93m, Pt, 56.95m, Pt, -57.39m, Pt,	3° to E, Fractu ?), 60°, Rf, PI 0°, So, PIn, C Rf, Un, Cn So, PIn, Cn	re , Cn , C	
- - - 58 -	Step			(5)			· · · · · · · · · · · · · · · · · · ·	57.9m, abrupt tran sandstone.	sition from silts	stone to	XW						-57.75m, ~7 (subsidence -57.86m, Pt, -57.9m, Jt, 1	0° to SSE, Fra ??), 65°, So, P 5°, Rf, Un, Cr 5°, Rf, Un, Cn 0° to SSE, Fra	cture In, Cn to W	
- - - -							· · · · · · · · · · · · · · · · · · ·	58.4m, abrupt tran	sition back to s	iltstone.	Fr						(subsidence (subsidence 58.36m, Pt, -58.62m, Pt, -58.83m, Pt,	9° to SSE, Fra ??), 45°, Rf, Pl 0°, Rf, Un, Cl 3°, So, Pln, C 5°, Rf, Un, Cr	n, Cn n, Cn AY n	
- 59 - - -						59.50		59.28m, healed pa erosional surface?	rting at 30° to v	W, possible							-59.03m, Pt, -59.21m, Pt,	10°, So, Pln, 3°, So, Pln, C	Cn -	
- 60			59.65			59.70	× · · · ·	INTERLAMINATEI SANDSTONE (30 (refer to next page From 59.75-60.4m	D TO INTERBE (6) AND SILTS (7) for description (1, geophysics: b	EDDED TONE (30%): 1) pore caving.	HW									
6	0 ct-	and	ard a	hee	to fo	vr 📕		GHD									Joh N	0.		
de	tails	of	and s abbr	evia	tion	s (Level 3, GHD To	wer, 24 Honeys	uckle Drive, Nev	wcastle	23	00 Australia							
&	basis	s of	des	cript	ion	s]		CONSULTING	tails of abbreviations basis of descriptions tails of descriptions tails of descriptions											

<u> </u>	ore l	.00	SHE	ET														
CI	ient :		Port	t of N	lewc	astle		volonmont					ł	101	_E N	o. GE	BH5	
	ojeci	· m:	46 F	-itzro	u Co w Sti	reet / 6	5 Der	nison Street Carringt	on NSW							SHEET	14 OF 14	
Po	ositio	n :	384	463.9	9 E 6	635711	4.1 N	MGA2020/ 56	Surface RL:	2.18m AH	ID	Α	ngle fro	m Ho	riz. : 90	°	Processe	d: SBO
Ri	д Тур	e:	Scou	ut		M	ount	ing: Truck	Contractor :	Total Drilling Pt	y Ltd	D	riller : G	Glen G	iearside		Checked :	SJM
Ca	asing	Dia	a.: 1	14m	m/90)mm B	arrel	(m): 3.0m	Bit : Step 7			Bit	Conditi	on : (Good		Date: 11/	03/2021
Da	ate St	art	ed: 1	/3/20	021	D	ate C	completed : 3/3/202	Logged by	: Nick Leaver		Dat	e Logge	ed: 1	1/3/202	1	Note: * indicates sig issue of log or las	natures on original at revision of log
	[DRI	LLING	6				_	MATERIAL		-	-		-	1		FRACTURE	S
TE (m)	& Casing		əpth (m)	-oss / Run %)	(c Log	ROCK NAME: grain inclusions or minor [COBBLES / BOU SOIL NAME: colour, plas	n size, colour, fabric components, moist and LDERS / FILL / TO ticity / primary parti	c and texture, ure, durability PSOIL] then cle characteristics,	ering		ength nength MPa • Axial • Diametral) 	mm)	(joints Defec and s	Additional s, partings, seam veins) t type: orientatio hape, compositio	n, roughness
SC/	Drilling	Water	Drill De	(Core	RQD (%	Depth metres	: Graphi	SANDSTONE (200	D TO INTERBE	DDED	Weath	Soil 0.03	10 H 13 3 3 10 3 10 3 10 3 10 3 10 3 10	20 EH		-60.1m. Pt. 3	3°. Rf. Un. Cn	ess, other.
-							· · · · ·	sandstone is fine to to grey, indistinctly dark grey, closely t brown to dark brow thick.	o medium grain bedded at 0-15 o widely spaced /n, thickness up	ed, pale grey 5°, siltstone is d tuff, pale o to 80mm	Fr					-60.29m, Pt	0°, Rf, Pln, Cn 6m, CSm	-
-				(24)			· · · · ·	60.3-60.38m, heal 20mm, thick infiller From 60.7-61.7m,	ed fault, host ro d by clay, traces geophysics: bo	ock up to s of pyrite. re caving.	HW Fr							-
-61 - -						61.15		CORE LOSS: 400	mm.		HW					-61.09-61.14	lm, CSm	-
- -			61.55			61.55		INTERLAMINATE SANDSTONE (30 sandstone is fine to	D TO INTERBE %) AND SILTS p medium grain	DDED ONE (30%): ed. pale grey						-61.58m, Pt	0°, Rf, Pln, Cn	- - -
- - 62 -				(0)			· · · · · ·	to grey, indistinctly dark grey, closely t brown to dark brow 61.93m, 'flame stru deformation).	bedded at 0-15 o widely spaced /n, thickness up ucture' (soft sec	5°, siltstone is d tuff, pale d to 80mm. diment						-61.87m, Pt -61.94m, Pt -62.08m, Fra 60°, So, Plr	3°, Rf, Un, Cn 10°, So, Pln, Ui acture (subsiden n, Cn	ce?),
-	7 + HQ casing			(0)		62.38		INTERLAMINATE SANDSTONE (10 sandstone is fine g	D SILTSTONE %): siltstone is rained, grey.	(90%) AND dark grey,	Fr					-62.35m, ~7 (subsidence 62.45m, ~7 (subsidence	5° to NE, Fractu e?), 60°, So, Pln 5° to NE, Fractu e?), 60°, Rf, Un,	re , Cn - re Cn -
- - -63	Step		62.85				· · · · ·						•			-62.7m, ~75 (subsidence	° to NE, Fracture e?), 60°, So, Pln	, Cn -
-			3 55	(0)		62 55	· · · · ·									-63.27m, Pt -63.27m, Pt -63.32m, Pt -63.4m, ~75 (subsidence	10°, So, Pin, Cri 10°, So, Pin, Cri 10°, So, Pin, Cri ° to NE, Fracture e?), 60°, So, Pin	י י פילי , Un
- - - - 64						03.55		VOID: mine subsic 63.68m, geophysic	lence. s: void.				1000					- - - - -
-				(100)				At 64.3m, geophys	ics: base of voi	d.								
- - 65			65.00			65.00		Target Depth End of Borehole at	65.00 metres.									
Se	e sta	and	lard s	shee	ts fo	or		GHD Level 3 GHD To	wer, 24 Honever	ickle Drive New	castle	2300	Australia	1		Job	ю.	
de &	etails basis	of s of	abbr f des	evia cript	tion: tions	s (T: +61 2 4979 99 CONSULTING	999 F: +61 2 4	979 9988 E: n CAL ENGINEE	timail(@ghd. AND	.com GEOLO	GIST	S		125457	90

	Dort of Neurocette	DRAWN H Warr	DATE 24/03/2021	
GHD	Proposed Commercial Development	CHECKED S MacKenzie	DATE 24/03/2021	
GIND	46 Fitzroy Street / 65 Denison Street Carrington NSW	SCALE Not To S	cale	A4
	Core Photographs	PROJECT № 12545790	FIGURE № GBH5 1/4	

	Double of Neuropedia	DRAWN H Warr	DATE 24/03/2021	
GHD	Proposed Commercial Development	CHECKED S MacKenzie	DATE 24/03/2021	
GIND	46 Fitzroy Street / 65 Denison Street Carrington NSW	SCALE Not To S	cale	A4
	Core Photographs	PROJECT № 12545790	FIGURE № GBH5 2/4	

		DRAWN H Warr	DATE 24/03/2021	
GHD	Proposed Commercial Development	CHECKED S MacKenzie	DATE 24/03/2021	
GIND	46 Fitzroy Street / 65 Denison Street Carrington NSW	SCALE Not To S	cale	A4
	Core Photographs	PROJECT № 12545790	FIGURE № GBH5 4/4	

_	BORE	IOLE	LOG S	HEET								
	Client	: F	Port of	Newcastle	;				HOLE N	0.	GB	3H6
	Project Locati	1: H	^o ropos 46 Fitz	sed Comme	Prcial De	velopm	ent reet (` arr	rington NSW	s.	HEET	Г 1 OF 16
F	Positi	on :	38441	4.9 E 6357	104.9 N	MGA	2020/ 5	56	Surface RL: 2.09m AHD Angle from Horiz. : 90	0		Processed : SBO
	Rig Ty	pe:	Scout		Mounti	ing: Tr	JCK		Contractor : Total Drilling Pty Ltd Driller : Glen Gearside			Checked : SJM
Ŀ	Date S	tarted	: 23/2	2/2021			Date C	Corr	npleted : 23/2/2021 Logged by : Nick Leaver			Date: 11/03/2021
		DR	JLLIN	G					MATERIAL			Note: * indicates signatures on original issue of log or last revision of log
-	\neg								Description			
در ۱۸ ۲ (_۲ ۳۰)	SUALE (III) Drilling Mathod	Hole Support	\ Casing	Water Samples & Tests	Depth	metres	נוסס היישהם	USC Symbol	[COBBLES/BOULDERS/FILL/TOPSOIL] then SOIL NAME: plasticity / primary particle characteristics, colour, secondary and minor components, zoning (origin) and ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects	Moisture Condition	Consistency / Density Index	Comments/ Observations
	1			<u>₹</u> 12121	0).40		-	[TOPSOIL]: Silty SAND: fine to medium grained, brown, poorly graded, rootlets to 100mm. [FILL]: SAND: medium grained, brown to dark grey, shells and shell fragments present.	M	-	
-						1.80	C	л ЭР	Sandy CLAY: high plasticity, dark grey (estuarine).	M	F	-
	3	,				3.20			fragments (marine).			
	ajuqqsenn 4					4.35		1	Sandy CLAY: medium plasticity, dark grey, fine to medium grained sand (estuarine?).	M	F	
	<u>д</u>						S	P	SAND: medium grained, dark grey, trace of shell tragments.	W	D- VD	
	See standard sheets for details of abbreviations & basis of descriptions CONSULTING GEOTECHNICAL ENCINEERS AND GEOLOGISTS										ob N	^{Io.} 12545790

-	BC	REHO	LE LO	g shee	ET								
12/21	Cli	ent :	Por	t of Nev	wcastle				HOLE N	0.	GB	SH6	
5	Pro	oject :	Pro • 46 I	posed (Commercia Stroot / 65	Doniso	opment	t Corr		۰. ج		2 OF 16	
- CI	Po	sition :	384	414.9 E	6357104.	9 N N	IGA202	0/ 56	Surface RL: 2 09m AHD Angle from Horiz.: 90	•		Processed : SBO	
∐ ∐	Rig	g Type	: Sco	ut	Мо	ounting	: Truck		Contractor : Total Drilling Pty Ltd Driller : Glen Gearside			Checked : SJM	
MPLA	Da	te Star	ted: 2	23/2/20	21		Dat	e Con	npleted : 23/2/2021 Logged by : Nick Leaver			Date: 11/03/2021	
			DRILL	.ING					MATERIAL			Note: * indicates signatures on original issue of log or last revision of log	
- פ פער פער					ø				Description	u		Comments/	
	SCALE (m)	Drilling Method	Hole Support \ Casing	Water	Samples & Test	Depth metres	Graphic Log	USC Symbol	[COBBLES/BOULDERS/FILL/TOPSOIL] then SOIL NAME: plasticity / primary particle characteristics, colour, secondary and minor components, zoning (origin) and ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects	Moisture Conditi	Consistency / Density Index	Observations	
	· 6 · 7 · 8	Washbore	HWT casing-					SP	SAND: as previous.	w			
F	10	a c1		hest	for -		СП	<u> </u>			oh N		
	96 26	e stan tails o	uard s f abhr	eviation			Level	3, GHD) Tower, 24 Honeysuckle Drive, Newcastle 2300 Australia	J	50 1		
	&	basis o	of des	criptio	ons		1: +6 CON	1 2 497 SULTII	79 9999 F: +61 2 4979 9988 E: ntimail@ghd.com NG GEOTECHNICAL ENGINEERS AND GEOLOGISTS	12545790			

_	во	REHO	LE LO	g shee	T							
3/21	Clie	ent :	Por	t of New	vcastle				HOLE N	0	GB	H6
10	Pro	ject :	Pro	posed C	Commercia	al Devel	opment	t t Com		۰.		3 OF 16
		ation ·	384	-112roy 2	6357104			$\frac{1}{20}/56$				Processed · SBO
	Rin	Tvne	• Scol	+1-1.5 L	0007 104. Mo	unting	Truck	.0/ 00	Contractor : Total Drilling Pty I td Driller : Glen Gearside			Checked : SJM
	Dat	e Star	ted : 2	23/2/202	21	unung	Dat	te Con	noleted : 23/2/2021			Date: 11/03/2021
		e etai					Bu					Note: * indicates signatures on origina
2												
		Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth metres	Graphic Log	USC Symbol	Description [COBBLES/BOULDERS/FILL/TOPSOIL] then SOIL NAME: plasticity / primary particle characteristics, colour, secondary and minor components, zoning (origin) and ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects	Moisture Condition	Consistency / Density Index	Comments/ Observations
	111111111111111111111111111111111111111		HWT casing					SP	SAND: as previous. 11.7m, becoming pale grey. 13.5, becoming dark grey.	W		
Ľ	15 [∟]	1	1	ı – – – –	I	·		_	1	·	<u> </u>	
	See	e stan	dard s	sheets	for		GHI) З СНГ) Tower 24 Honevsuckle Drive Newcastle 2300 Australia	J	ob N	0.
details of abbreviations Level 3, GHD Tower, 24 Honeysuckle Drive, Newcastle 2300 Australia T: +61 2 4979 9999 F: +61 2 4979 9988 E: +61 2 4979 9999 F: +61 2 4979 9988 CONSULTING GEOTECHNICAL ENGINEERS AND GEOLOGISTS											2545790	

В	OREHOL	LE LO	G SHE	:ET							
CI	ient :	Por	t of Ne	wcastle	- 	_	_	HOLE N	0.	GB	 КН6
Pr	oject :	Pror	posed (Commercia	al Develo	opment	t t Corr		с. s		
		· 384	414.9 [E 6357104		n Suee	20/56	Surface RI · 2.09m AHD Angle from Horiz. : 90	•		Processed : SBO
Ri	ia Type	: Sco	 ut	Mc	ounting	: Truck	(Contractor : Total Drilling Pty Ltd Driller : Glen Gearside			Checked : SJM
Da	ate Star	ted : 2	23/2/20	J21	<u></u>	Da	te Con	npleted : 23/2/2021 Logged by : Nick Leaver			Date: 11/03/2021
\vdash			ING					ΜΔΤΕΡΙΔΙ			Note: * indicates signatures on origina issue of log or last revision of log
				T					1	-	ž
SCALE (m)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth metres	Graphic Log	USC Symbol	Description [COBBLES/BOULDERS/FILL/TOPSOIL] then SOIL NAME: plasticity / primary particle characteristics, colour, secondary and minor components, zoning (origin) and ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects	Moisture Condition	Consistency / Density Index	Comments/ Observations
- - - - - -					15.70		SP	SAND: as previous. Sandy CLAY: medium plasticity, grey to dark grey, fine to medium grained sand, traces of shell fragments (estuarine).	W	D- VD	
- - 16 - - - - - -	i										
- 17 - - - - - - - 18 - - 18 - -	Washbore	HWT casing									
- - - - - - - - - - - - - - - - - - -					18.50		CI	CLAY: medium plasticity, dark grey (estuarine).	M	St	
Se de &	e stan etails of basis (dard इ f abbr of des	sheets eviatio	s for ons ons	HD	GHI Level T: +f	D 3, GHE 31 2 497	D Tower, 24 Honeysuckle Drive, Newcastle 2300 Australia 79 9999 F: +61 2 4979 9988 E: ntlmail@ghd.com	J	ob N 1	^{Io.} 12545790

В	OREHOL	E LOC	SHEE	Т									
	ient :	Port	of New	castle .				HOLE N	о.	GB	BH6		
	OJECT :	Prop 46 F	itzrov S	ommercia Street / 65	I Develo Deniso	opment n Stree	t at Carr	ington NSW/	S	HEET	Г 5 OF 16		
Po	sition :	3844	114.9 E	6357104.	9 N N	1GA202	20/ 56	Surface RL: 2.09m AHD Angle from Horiz. : 90	0		Processed : SBO		
Ri	g Type :	Scou	t	Мо	unting	Truck		Contractor : Total Drilling Pty Ltd Driller : Glen Gearside			Checked : SJM		
Da	ate Start	ed:2	3/2/202	1		Dat	te Con	npleted : 23/2/2021 Logged by : Nick Leaver			Date: 11/03/2021		
		DRILL	ING					MATERIAL			Note: * indicates signatures on original issue of log or last revision of log		
5 								Description	_				
SCALE (m)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth metres	Graphic Log	USC Symbol	[COBBLES/BOULDERS/FILL/TOPSOIL] then SOIL NAME: plasticity / primary particle characteristics, colour, secondary and minor components, zoning (origin) and ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects	Moisture Condition	Consistency / Density Index	Observations		
-21 21 	Washbore	HWT casing		U50			CI	CLAY: as previous.	M	St	21.0m, PP=120/140/130kPa		
-25) <u> </u>					· · · ·							
Se de &	e stan tails of basis o	dard s abbro f deso	heets f eviation cription	for ns ns	HD	GHD Level 3, GHD Tower, 24 Honeysuckle Drive, Newcastle 2300 Australia T: +61 2 4979 9999 F: +61 2 4979 9988 E: ntlmail@ghd.com CONSULTING GEOTECHNICAL ENGINEERS AND GEOLOGISTS					Job No. 12545790		

В	OREHO	LE LO	g shee	ET							
	lient :	Por	of New	vcastle				HOLE N	0	GB	НА
B P	roject :	Pro	oosed (Commercia	l Devel	opment			۰. د		
	ocation	: 46 l	-itzroy	Street / 65	Deniso	n Stree	t, Carr	Surface PL 2.00 - All D Angle from Heriz : 00	, ,	HEE	Drassand : SPO
	ia Type	· Scol	414.9 E	. 0357104.: Mo			0/ 50	Contractor : Total Drilling Pty Ltd Driller : Glen Gearside			Checked : SIM
	ate Star	ted · 2	n 23/2/201	21	unung	Dat	e Con	noleted : 23/2/2021			Date: 11/03/2021
			NO	21		Du					Note: * indicates signatures on original
	1		ING					MATERIAL			issue of log of last revision of log
SCALE (m)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth metres	Graphic Log	USC Symbol	Description [COBBLES/BOULDERS/FILL/TOPSOIL] then SOIL NAME: plasticity / primary particle characteristics, colour, secondary and minor components, zoning (origin) and ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects	Moisture Condition	Consistency / Density Index	Comments/ Observations
	5						CI	CLAY: as previous.	Μ	St	-
- - - - -27 - - -	7 	sing			26.40		СН	CLAY: high plasticity, dark grey, with fine to medium grained sand, trace of shell fragments (estuarine).	M	VSt	
- - - - - - - - - - - - - - - - - - -	Washbu				27.50		СН	CLAY: high plasticity, dark grey, with fine to medium grained sand, trace of shell fragments (estuarine).	M	VSt- H	
- - - - - - 30					29.50		CL	CLAY: low plasticity, dark grey, trace of shell fragments (estuarine).	М	VSt- H	
6	oo etan	dard 4	sheete	for		GHI	2		J	ob N	lo.
details of abbreviations										10545700	
&	basis	of des	criptio	ons 🛛 🚬		CON	SULTI	NG GEOTECHNICAL ENGINEERS AND GEOLOGISTS			12040/90

BOREHOLE LOG SHEET Client : Port of Newcastle 31/3/21 HOLE No. GBH6 Project : Proposed Commercial Development SHEET 7 OF 16 TEMPLATE 2.00.GDT Location: 46 Fitzroy Street / 65 Denison Street, Carrington NSW Position : 384414.9 E 6357104.9 N MGA2020/56 Surface RL: 2.09m AHD Angle from Horiz. : 90° Processed : SBO Rig Type : Scout Mounting: Truck Contractor: Total Drilling Pty Ltd Driller : Glen Gearside Checked : SJM Date Started : 23/2/2021 Date Completed : 23/2/2021 Logged by : Nick Leaver Date: 11/03/2021 ote: * indicates signatures on origi issue of log or last revision of log DRILLING MATERIAL BOREHOLE AS1726 2017 12545790 DENISON ST CARRINGTON.GPJ GHD GEO Description Comments/ Moisture Condition Samples & Tests Observations **Drilling Method** Hole Support \ Casing Consistency / Density Index **USC Symbol** [COBBLES/BOULDERS/FILL/TOPSOIL] then Graphic Log SCALE (m) SOIL NAME: plasticity / primary particle characteristics, colour, secondary and minor components, zoning (origin) and Depth metres Water ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects CL CLAY: as previous. VSt-H 30.0m. Μ PP=360/420/430kPa U50 31 GEO 32 HWT casing Washbore 32.60 CL CLAY: low plasticity, dark grey (estuarine). М VSt 33 34 35 Job No. GHD See standard sheets for Level 3, GHD Tower, 24 Honeysuckle Drive, Newcastle 2300 Australia T: +61 2 4979 9999 F: +61 2 4979 9988 E: ntlmail@ghd.com GHD details of abbreviations 12545790 & basis of descriptions CONSULTING GEOTECHNICAL ENGINEERS AND GEOLOGISTS

_	BOR	REHOL	E LO	g shei	ET							
13/2/	Clie	nt :	Por	t of Ne	wcastle				HOLE N	0.	GB	BH6
	oca	ect : ation ·	Pro 46 I	itzrov	Commercia Street / 65	II Devel Deniso	opment n Stree	t Carri	ington NSW	s	HEET	Г 8 OF 16
3 3 1	Posi	tion :	384	414.9 E	E 6357104.	9 N N	IGA202	0/ 56	Surface RL: 2.09m AHD Angle from Horiz. : 90	0		Processed : SBO
	Rig '	Type :	Scou	ut	Мо	unting	: Truck		Contractor : Total Drilling Pty Ltd Driller : Glen Gearside			Checked : SJM
	Date	Start	ed : 2	3/2/20	21		Dat	e Com	hpleted : 23/2/2021 Logged by : Nick Leaver			Date: 11/03/2021
2		I	DRILL	ING					MATERIAL			Note: * indicates signatures on original issue of log or last revision of log
		q			ists				Description	dition		Comments/ Observations
		Drilling Methoo	Hole Support \ Casing	Water	Samples & Te	Depth metres	Graphic Log	USC Symbol	[COBBLES/BOULDERS/FILL/TOPSOIL] then SOIL NAME: plasticity / primary particle characteristics, colour, secondary and minor components, zoning (origin) and ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects	Moisture Conc	Consistency / Density Index	
	36					36.20		CL	CLAY: as previous.	М	VSt	- - - - - - - - - - - - - - - - - - -
5	37					36.20		CL	Sandy CLAY: medium plasticity, fine to medium grained sand, trace of shell fragments up to 1mm (estuarine).	М	VSt	- - - - - - - - - - - - - - - - - - -
	338				U50	39.15		CL	Gravelly CLAY: low plasticity, brown to dark grey, fine to medium gravel up to 15mm (fluvial?).	M	Н	- - - - - - - - - - - - - - - - - - -
-40 See standard sheets for details of abbreviations & basis of descriptions & basis of descriptions GHD Level 3, GHD Tower, 24 Honeysuckle Drive, Newcastle 2300 Australia T: +61 2 4979 9999 F: +61 2 4979 9998 E: ntlmail@ghd.com CONSULTING GEOTECHNICAL ENGINEERS AND GEOLOGISTS												lo. 12545790

	во	REHO	E LO	g shee	ET							
13/21	Cli	ent:	Por	t of New	wcastle					0.	GB	BH6
2		ation	• 46 I	posea (Fitzrov :	Jommercia Street / 65	l Develo Deniso	opmeni n Stree	t Carri	ington NSW	s	HEET	5 9 OF 16
רפ מי	Pos	sition :	384	414.9 E	6357104.9	9 N N	IGA202	0/ 56	Surface RL: 2.09m AHD Angle from Horiz. : 90°	>		Processed : SBO
N L	Rig	Туре	: Sco	ut	Мо	unting	Truck		Contractor : Total Drilling Pty Ltd Driller : Glen Gearside			Checked : SJM
ШЧГ ШЧГ	Dat	e Star	ted: 2	23/2/20	21		Dat	te Com	npleted : 23/2/2021 Logged by : Nick Leaver			Date: 11/03/2021
2			DRILL	ING					MATERIAL			Note: * indicates signatures on original issue of log or last revision of log
UN.GPJ GHD GE	(m	lethod	oport		& Tests		Log	lodn	Description [COBBLES/BOULDERS/FILL/TOPSOIL] then SOIL NAME: plasticity / primary particle characteristics, colour, secondary and	Condition	ncy / ndex	Comments/ Observations
	SCALE (Drilling N	Hole Sup \ Casing	Water	Samples	Depth metres	Graphic		minor components, zoning (origin) and ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects	Moisture	Consiste	
						40.90		UL	Gravelly CLAY: as previous.	м	Н	
	-41							CI	Sandy CLAY: medium plasticity, dark grey, fine to medium grained sand (fluvial?).	Μ	St- VSt	
	-42	-Washbore	HWT casing						42.4m, becoming brown.			- - - - - - - - - - - - - - - - - - -
	-44					43.80			SANDSTONE AND SILTSTONE?: fine to medium grained, brown, extremely weathered?.	-	-	
ŀ	-45 ^L		dord	beste	for		GHI	ר ר			oh N	
	det	ails of asis o	uard s f abbr of des	eviatio	ons	HD	Level T: +6	3, GHD 1 2 497	Tower, 24 Honeysuckle Drive, Newcastle 2300 Australia '9 9999 F: +61 2 4979 9988 E: ntlmail@ghd.com		1	12545790
L	~ .						CON	JULII	NG GEOTECHNICAL ENGINEERS AND GEOLOGISTS			

В	OREHO	DLE LO	g shee	ET							
С	lient :	Por	t of Nev	vcastle				HOLE N	0	GF	SH6
P	roject	Pro	posed (Commercia	l Develo	opment	t t. Corr		۱۵		10 OF 16
P	osition	1: 384	414.9 E	6357104.9	9 N M	IGA202	20/ 56	Surface RL: 2 09m AHD Angle from Horiz. : 90	, ,		Processed : SBO
R	ig Type	e: Sco	ut	Мо	unting:	Truck		Contractor : Total Drilling Pty Ltd Driller : Glen Gearside			Checked : SJM
D	ate Sta	rted : 2	23/2/202	21		Dat	te Con	npleted : 23/2/2021 Logged by : Nick Leaver			Date: 11/03/2021
		DRILL	ING								Note: * indicates signatures on origina issue of log or last revision of log
SCALE (m)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth metres	Graphic Log	USC Symbol	Description [COBBLES/BOULDERS/FILL/TOPSOIL] then SOIL NAME: plasticity / primary particle characteristics, colour, secondary and minor components, zoning (origin) and ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects	Moisture Condition	Consistency / Density Index	Comments/ Observations
	Washbore	HWT casing					-	SANDSTONE AND SILTSTONE?: as previous.	-		
-4 - - -	3				48.20		-	CORE LOSS: 300mm.	-	-	- - - -
t					48.50	\backslash					
- - -4: - - - - - - - 5:	9							Start of coring at 48.5 metres. For cored interval, see Core Log Sheet.			
S d &	ee sta etails basis	ndard s of abbr of des	sheets eviatic criptio	for ons ons	HD	GHI Level T: +6	D 3, GHE 31 2 497	D Tower, 24 Honeysuckle Drive, Newcastle 2300 Australia 79 9999 F: +61 2 4979 9988 E: ntlmail@ghd.com NG GEOTECHNICAL ENGINEERS AND GEOLOGISTS	J	ob N	lo. 12545790

co	re L	.0G	SHE	ET																	
Clie	ent:		Por	t of N	lewc	astle		a valaam aat						Н	OL	E	No	. GB	H6		
Loc	catio	: n:	Pro 46	pose Fitzro	a Co ov St	reet / 6	iai De 5 Dei	evelopment hison Street Carringto	on NSW									SHEET	11 OF	16	
Pos	sitior	n :	384	414.9	9 E 6	635710	4.9 N	MGA2020/ 56	Surface RL:	2.09m AH	D	Α	ngle	from	Hor	iz. : 9	90°		Proces	sed :	SBO
Rig	ј Тур	e:	Sco	ut		N	lount	ing: Truck	Contractor :	Total Drilling Pty	/ Ltd	D	riller	: Gle	en Ge	earsi	de		Check	ed: S	SJM
Cas	sing	Dia	1.: 1	114m	1m/90	0mm B	arrel	(m): 3.0m	Bit : Step 7			Bit	Conc	litio	n:G	iood			Date:	11/03/	2021
Dat	te Sta	arte	ed : 2	23/2/2	2021		ate C	Completed : 23/2/202	1 Logged by	: Nick Leaver		Da	te Log	ged	1:26	6/2/2	021		issue of log	or last revi	sion of log
Dro	D			ز م					MATERIAL			Ec	timat	ad	Sn	acin		IURAL	Addition		•
SCALE (m)	Drilling & Casing	Water	Drill Depth (m)	(Core Loss / Run %	RQD (%)	Depth metres	Graphic Log	ROCK NAME: grain inclusions or minor or [COBBLES / BOUI SOIL NAME: colour, plast secondary and min	size, colour, fabri components, mois and .DERS / FILL / TO icity / primary part or components, zo	c and texture, ture, durability PSOIL] then cle characteristics, nning (origin)	Weathering	<u>VL</u> 0.1 0.03	trengt (50) MF ●-Axial -Diametral	EH 10 BU BU	1) 1) 1)	nm)	1000	(joints Defect and sh ape	partings, s veir type: orien ape, compr ture and th	eams, zo ns) tation, ro psition or ickness,	ughness and ughness coating, other.
- 46																					
-48						48.50		Start of coring at 48 For Non Cored inte Sheet. SILTSTONE: dark	3.5 metres. rval, see Borel grey, with lami	nole Log nated to very											
-49	Step 7 + HQ casing	4	8.91	(0)		48.91 49.14		INTERLAMINATED SANDSTONE (75% sandstone is fine to siltstone is dark gre 49.2m, geophysics	nm. TO INTERBE (a) AND SILTS b medium grain y, horizontal b bore caving. hly weathered :	DDED TONE (25%): ied, grey, edding.	xw - HW						-4 t	9.36m, Pt, edding to № 9.82m, Pt, 9.83m, Pt,	1°, So, Pln, W 0°, So, Pln, 0°, So, Pln,	Cn, Cn Cn	
-50-							·· · · ·				•					1003		Lab M	_		
Se	e sta	and	ard s	shee	ts fo	or		GHD Level 3. GHD Tox	ver, 24 Honevsi	ickle Drive. Newo	astle	2300	Austr	alia				Job N	0.		
details of abbreviations & basis of descriptions								T: +61 2 4979 99	99 F: +61 2 4	979 9988 E: nt	mail	@ghd	.com		ICTO			1	2545	790	

Ľ	OR	E L	OG	SHE	ET														
F	lie: roi	nt: ect:		Port	t of N	lewc d Co	astle mmerc	ial De	evelopment					F	OL	ΕN	o. GE	BH6	
L	oca	ation	1:	46 F	-itzrc	by Sti	reet / 6	5 Dei	nison Street, Carrington NSW								SHEET	12 OF 16	
F	osi	tion	:	384	414.9	9 E 6	635710	4.9 N	MGA2020/ 56 Surface RL: 2.09m	AHD		ŀ	Angl	e fron	1 Hori	z. : 90	٥	Processed	: SBO
F	lig T	Туре	e :	Scou	ut		N	lount	ing: Truck Contractor : Total Drilli	ng Pty Lt	d	0	Drille	er:G	en Ge	earside		Checked :	SJM
4	asi	ng I	Dia	.: 1	14m	m/90	0mm B	arrel	(m): 3.0m Bit: Step 7			Bi	t Co	nditio	n :G	ood		Date: 11/0	3/2021
Ľ	ate	Sta	irte	e d : 2	3/2/2	2021		ate C	Completed : 23/2/2021 Logged by : Nick Le	aver		Da	ite L	.ogge	1: 26	6/2/202	.1	issue of log or last	revision of log
		D	RIL	LING	;				MATERIAL			_				۲		FRACTURES	
	rog	g & Casing	5	epth (m)	Loss / Run %)	(%	_ <u>s</u>	nic Log	ROCK NAME: grain size, colour, fabric and texture inclusions or minor components, moisture, durabili and [COBBLES / BOULDERS / FILL / TOPSOIL] then SOIL NAME: colour, plasticity / primary particle characte	ristics,		13 N N N		ated Igth MPa ^{Ial} etral	spa (r	nm)	(joints) Defect and s	, partings, seams veins) t type: orientation hape, composition erture and thickne	, zones and , roughness n or coating, ss. other.
		Drillir	Wate	Drill	(Core	RQD (Deptl	. Grap	INTERLAMINATED TO INTERBEDDED SANDSTONE (75%) AND SILTSTONE (25	%):			-öc ⊻⊻	- ₆ 5	42 12	100 100 100			
									as previous. From 50.7-51.3m, geophysics: bore caving.	HI	N						-50.32m, Pt, -50.41m, Pt,	0°, So, Pin, Cn 0°, So, Pin, Cn	-
- - -5	1		5	0.90			50.90 51.15		CORE LOSS: 250mm.								-50.82m, Pt	0°, So, PIn, Cn	- - -
	2	g							INTERLAMINATED TO INTERBEDDED SANDSTONE (75%) AND SILTSTONE (25 sandstone is fine to medium grained, grey, siltstone is dark grey, horizontal bedding. 51.35-51.4m, bedding at 30°. 51.63m, abrupt transition from siltstone to sandstone. 51.63-52.24m, sandstone becoming fine to coarse grained. From 52.1-52.2m, geophysics: bore caving.	%):			0				-51.6m, Pt, 4 -51.78m, Jt, -51.85m, Jt,	5°, So, PIn, Cn 30° to E, Rf, Un, 15° to E, Rf, PIn,	- - - - - - - - - - - - - - - - - - -
	3	Step 7 + HQ casir			(8)				52.67m, tuffaceous pale brown bed.	F	r	с					-52.26m, Jt, -52.7m, Pt, -52.83m, Pt, -53.1m, Fra 60°, Rf, Pin -53.21m, Pt	35°, So, Pin, Cn)°, Rf, Pin, Cn 0°, Rf, Pin, Cn sture (subsidence , Cn 0°, Rf, Pin, Cn	- - - - - - - - - - - - - - - - - - -
	4		5	3.90			53.90		From 53.8-54.0m, geophysics: bore caving. CORE LOSS: 210mm.								-53.66m, Pt -53.72m, Fra 50°, So, Plr	2°, Rf, Pln, Cn acture (subsidenc , Cn	- - - - - - - - - -
									INTERLAMINATED TO INTERBEDDED SANDSTONE (75%) AND SILTSTONE (25 sandstone is fine to medium grained, grey, massive, siltstone is dark grey, horizontal bedding. 54.15m, tuff. 54.15-54.36m, bedding at 20°.	%): F	r						-54.16m, Jt, -54.21m, Jt, -54.24m, Jt, -54.77m, ~7 (subsidence	20°, So, Pln, Cn 20°, So, Pln, Cn 20°, So, Pln, Cn 20° to E, Fracture	-
Ľ	5'—						· ·			1			, 1999	9		1000		1	
1	iee	sta	nda of	ard s	shee	ts fo	or		Level 3, GHD Tower, 24 Honeysuckle Drive.	Newcast	le	230	0 Au	stralia				IU.	
	leta k ba	uis (asis	of of	des	evia cripi	tion	s		T: +61 2 4979 9999 F: +61 2 4979 9988	E: ntlma	ail(Z	@gh	d.cor GE	n Ol Oc	ereis			1254579	0

СС	DRE L	.00	SHE	ET												
Cli	ient :		Port	t of N	lewc	astle		a valanmant					Н		lo. GE	BH6
Lo	catio	m:	46 F	pose =itzro	u Co w St	reet / 6	5 Der	nison Street Carringto	n NSW						SHEET	13 OF 16
Po	sitio	n :	384	414.9	9 E 6	635710	4.9 N	MGA2020/ 56	Surface RL: 2	.09m AF	ID	4	Angle from	Horiz. : 9	0°	Processed : SBO
Rig	д Тур	e:	Scou	ut		M	lount	ing: Truck	Contractor: T	otal Drilling Pt	y Ltd	0	Driller : Gle	en Gearsid	e	Checked : SJM
Са	sing	Dia	i.: 1	14m	m/90	Omm B	arrel	(m): 3.0m	Bit : Step 7			Bi	t Conditior	1: Good		Date: 11/03/2021
Da	te St	arte	ed:2	23/2/2	2021	D	ate C	completed : 23/2/202	1 Logged by :	Nick Leaver		Da	ate Logged	: 26/2/20	21	Note: * indicates signatures on orig issue of log or last revision of log
		DRI		•				_	MATERIAL			-			NATURAL	FRACTURES
Pro	ogres	S		(% ו				De ROCK NAME: grain	escription size, colour, fabric	and texture,			stimated Strength	Spacing		Additional Data
SCALE (m)	Drilling & Casing	Water	Drill Depth (m)	(Core Loss / Rui	RQD (%)	Depth metres	Craphic Log	inclusions or minor c [COBBLES / BOUL SOIL NAME: colour, plast secondary and min INTERLAMINATED SANDSTONE (75% as previous.	omponents, moistu and DERS / FILL / TOP city / primary partic or components, zor TO INTERBEI b) AND SILTST	re, durability SOIL] then de characteristics, ning (origin) ODED ONE (25%):	Weathering		S(50) MPa - Adal - Diametral - Diametral - Diametral - Diametral - Diametral - Diametral	29000 2000 2000 2000 2000 2000 2000 200	(joints Defect and s ape -55.18m, Pt	s, partings, seams, zones an veins) t type: orientation, roughnes hape, composition or coating erture and thickness, other.
56				(7)				From 56.4-56.8m,	geophysics: bor	e caving.	Fr		C.		-55.43m, Pt -55.75m, Pt -55.95m, Pt -56.32m, Pt	, 10°, So, Pln, Cn , 3°, So, Pln, Cn , 1°, Rf, Pln, Cn , 5°, Rf, Pln, Cn
57	Q casing		56.90					56.6m, weathered s	seam. geophysics: bor	e spalling.	xw				-57.15m, Jt, -57.19m, Pt	30°, So, Pln, Cn 5°, Rf, Pln, Cn
58	Step 7 + H			(0)				58.25m, tuffaceous	bed.		sw	,	3		-57.86m, Jt,	20°, Rf, Un, Cn , 0°, So, Pln, Cn
59													•		-58.49m, Pt -58.88m, Jt, -59.1m, Pt, -59.21m, Jt,	, 10°, So, Pln, Cn 30°, So, Pln, Cn 5°, Pln, Cn 15°, Rf, Un, Cn
			59.91				· · · · · · · · · · · · · · · · · · ·	59.37-59.45m, crac perpendicular to be fracture?). 59.7m, abrupt trans sandstone.	k, running dow Iding (subsider ition from siltst	n core ice one to	Fr	-			-59.34m, Pt,	, 3°, So, Pln, Cn 5°, So, Pln, Py
60							<u> </u>									
6-	0.04-	and	ard a	hee	te f	or 📕		GHD							Joh	No.
ටම de	e sta tails	of	aru s abhr	evia	tion	s	el.	Level 3, GHD Tov	ver, 24 Honeysuc	ckle Drive, New	castle	230	0 Australia			
&	basis	s of	des	crin	tion			1: +61 2 4979 99	99 F: +61249	199988 E: N	umail	@gh		ICTO		12545790

CONSULTING GEOTECHNICAL ENGINEERS AND GEOLOGISTS

C	ORE	LO	g Sh	EET								
C	ient	:	Po	rt of N	Vewo	astle				н		o. GBH6
	ojec	t:	Pro	pose	ed Co	ommerc	ial De	evelopment		••	•== ··	SHEET 14 OF 16
	ositi	on :	. 40 384	4414.	9 E (635710	4.9 N	MGA2020/ 56 Surface RL: 2 09m A	HD	Angle from	Horiz. : 90	Processed : SBO
R	g T	vpe :	: Sco	out		N	lount	ing: Truck Contractor : Total Drilling F	tv Lto	d Driller : Gle	en Gearside	Checked : SJM
С	asin	g Di	a. :	114m	۱m/9	0mm B	arrel	(m): 3.0m Bit: Step 7	-,	Bit Conditio	n: Good	Date: 11/03/2021
D	ate S	Star	ted :	23/2/	2021	D	ate C	Completed : 23/2/2021 Logged by : Nick Leaver	•	Date Logged	1: 26/2/202	1 Note: * indicates signatures on original issue of log or last revision of log
		DR	ILLIN	G				MATERIAL			N	IATURAL FRACTURES
Pr	ogre	ss		(%)				Description		Estimated	Spacing	Additional Data
		2		un				ROCK NAME: grain size, colour, fabric and texture, inclusions or minor components, moisture, durability		Strength	(mm)	(joints, partings, seams, zones and
Ē	Casi		E)	s/F			b	and	0	• • Axial		veins) Defect type: orientation, roughness
μĻ	80		epth	Los			ic L	SOIL NAME: colour, plasticity / primary particle characteristic	erin ^{'s}	O - Diametral		and shape, composition or coating,
SC	ili	ater	⊟⊡	ore	(%) D	etre	aph	secondary and minor components, zoning (origin)	eath	0.10 10 10 10 10 10 10	008	aperture and trickness, other.
		≥	ā	0	8	۵Ĕ	Ū		≥	EHH T VL SS EHH T VL	- 20 - 40 - 10(
-								INTERLAMINATED TO INTERBEDDED				-
╞							· · · · 	as previous.				-60.17m, Pt, 0°, So, Pln, Cn
ŀ								-				-60.31m, Pt, 0°, So, Pln, Cn
ŀ							. <u></u>	-				- - 60.48m Pt.0° So. Pln.Cn
Ē							- <u></u> -					-60.54m, Pt, 0°, So, Pln, Cn
┞							<u></u>	60.7m brown oiltetens hand 400mm thist				-60.65-60.7m, CSm?
ŀ								60.7m, brown sitistone band ~ roomm thick.				-60.78m, Pt, 0°, Rf, Pln, Cn
ŀ.												60.9m, Jt, 85° to NE, So, Pin, Py
6								-				60.96m, Jt, 20°, Rf, Pln, Cn
												-61.17m, Pt, 0°, Rf, Pln, Cn
ŀ							· · · ·	-				-
ŀ				(0)				-				-61.4m, Jt, 60°, Rf, Pln, Py -
ŀ												-61.52m, Pt, Rf, Pln, Cn
						61.65	- <u></u>	INTERLAMINATED SILTSTONE (90%) AND	-			-61.64m, Jt, 60°, Rf, Pln, Cn -61.66m, Pt, 0°, Rf, Un, Cn
ŀ								SANDSTONE (10%): siltstone is dark grey,				¹ 61.72m, Jt, 40°, Rf, Pln, Un ¹ 61.77m, Pt, 0°, Rf, Pln, Cn
ŀ								distinctly thinly laminated, horizontal,				-61.89m, Pt, 0°, So, Pln, Cn -
-62	2							microfractures, extremely closely spaced, associated with bedding.				-62.01m, Pt, 3°, Rf, Pln, Cn
[-62.11m, Jt, 60°, So, Pln, Cn -62.13m, Pt, 10°, So, Pln, Cn -62.17m, It, 60°, So, Pln, Cn
ŀ	l sino	, I						-				(possible subsidence fracture)
ŀ												70°, Pln, So, Un -
ŀ	<u>Ť</u> +								Fr			-
Ē	2 d											-62.7m .lt 45° So Pin Cn -
ŀ	st											62.72-62.78m, CSm 62.83m, Fracture (subsidence?)
ŀ			62.91		-			-				60°, So, Pln, Cn
-63	3											-
Ē							····					-63.13-63.19m, CSm
ŀ								-				-63.34m, Fracture (subsidence?),
t												60°, So, Pln, Cn -
-							<u></u>					-63.61m, Pt, 0°, Rf, Pln, Py
ľ												-63.8m. Pt. 0°. Rf Un. Pv
ŀ							<u></u>	-				
-64	ŀ						<u> </u>	-				-
ŀ								-				-64.17-64.19m, CSm
[64.25m, Fracture (possible subsidence) 70° to SF_Rf_Pln_Cn
ŀ							· · · ·	-				
ŀ							<u> </u>	-				-64.55m. Pt. 0°. Rf. Un. Cn
ŀ							<u> </u>					-
[
ŀ				(14)			· · · · 	-				-64.04m Eracture (subsidence?)
-65	5						····					
s	ee s	tan	dard	shee	ets f	or		GHD		- 0000 Aut 1		Job No.
						_ /		Level 3, GHD Tower, 24 Honeysuckle Drive, Nev	vcastle	e 2300 Australia		

etails of abbreviations & basis of descriptions 4

T: +61 2 4979 9999 F: +61 2 4979 9988 E: ntlmail@ghd.com CONSULTING GEOTECHNICAL ENGINEERS AND GEOLOGISTS

12545790

СС	ORE	-00	S SHE	ET															
Cli	ient :		Por	t of N	lewc	astle		walapmant						H	OL	EN	o. GE	BH6	
	ojeci	n:	46	pose Fitzro	ov St	reet / 6	5 Der	nison Street. Carringto	n NSW								SHEET	15 OF 16	
Po	sitio	n :	384	414.9	9 E 6	635710	4.9 N	MGA2020/ 56	Surface RL:	2.09m A	AHD		Angle fr	om	Hori	z.: 90)	Processe	d: SBO
Ri	g Ty	be:	Sco	ut		N	lount	ing: Truck	Contractor :	Total Drilling	Pty Ltd		Driller :	Gle	n Ge	earside		Checked	: SJM
Ca	sing	Dia	a.: ´	114m	nm/90	0mm B	Barrel	(m): 3.0m	Bit: Step	7		В	it Condi	tior	1: G	ood		Date: 11	/03/2021
Da	ate St	tart	ed : 2	23/2/2	2021		ate C	completed : 23/2/202	1 Logged by	: Nick Leave	r	D	ate Log	ged	: 26	6/2/202	1	Note: * indicates s issue of log or l	ignatures on origina ast revision of log
-		DRI	LLING	G	1		1			-	_	1 -				N		FRACTURE	IS
Pro	ogres	SS		(% u				ROCK NAME: grain	size, colour, fabi	ic and texture,			Strength	a 1	Spa (n	acing nm)	(1-1-1-	Additional	Data
(L	asing		Ê	/ Rui			_	inclusions or minor c	omponents, mois and	sture, durability		ŀ	s ₍₅₀₎ MPa	a	()	,	(Joints	, partings, sea veins)	ns, zones and
л) Ш	ပိ		pth (sso			Loc	[COBBLES / BOUL	DERS / FILL / TO	OPSOIL] then	ring "		 Axial O - Diametral 				Defect and s	t type: orientati hape, composit	on, roughness ion or coating,
SCAI	ling	ter	I De	L L	(%) (oth tres	tphic	secondary and mine	or components, z	zoning (origin)	athe	0.03	0.0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9		0	ape	erture and thick	ness, other.
0)	Dril	Wa	Dril	Ű	R	Del	Gra				We	Soil		띪	62	000 000 000			
									SILTSTONE	(90%) AND							60°, So, Plr	n, Cn	
-							· · · ·	SANDSTONE (10%): as previous	S.							-65.13m, Fra 60°, So, Plr	acture (subside ı, Cn	nce?),
-							· · · · ·										65.22m, Fra 60°, So, Plr	acture (subside 1, Cn	nce?),
							<u></u>										-65.4m, Fractor SW, So,	cture (subsiden Pln, Cn	ce), 70°
-						65.76	· · · ·				Fr						-65.65m, Pt	5°, Rf, Un, Cn	
								SILTSTONE: dark of laminated to lamina	rey, distinctly	/ thinly L with									
- -66								microfractures, extr	emely closely	spaced.							-65.93m, Pt -65.98m, Pt	0°, So, Pln, Ci 0°, So, Pln, Ci	ו ו
						66.11		COAL · black and m	ostly chiny t	ace of nurito	_						66.02m, Pt	10°, Rf, Pln, C acture, 75°, Rf,	n Pln, Cn
-	þ					66.30		face cleats at 90°, o	oal is mostly	crushed into							66.14m, po	sible crushed	zone one
	asin					00.00		coal up to 50mm.	everal large	sections of							66.25, Pt, 5 66.26-66.30	°, So, Pln, CLA)m, possible cr	Y/tuff ushed
-	ĝ						\mathbb{N}	66.19m, tuff layer, o	lark brown, h	ard, 2mm									
-	+ + 2							CORE LOSS: 1270	mm.		- ⁻								
	itep						$ \rangle $	From 66.3-71.3m, g	<pre>proughout. peophysics: </pre>	decrease in									
-	0		00.80				IV	natural gamma, coi spalling/caving.	nciding with b	ore									
-67											-								
							$ \rangle$												
-							$ \setminus$												
-				(59)			$\ \rangle$												
				(33)		67.57				6	_								
-								crushed into chunks	s up to 20mm	r pyrite, coal is with no large									
-								67.78m, tuff, dark b	urned to 68.0 Fown, 10mm	m. thick.									
-								67.87-67.91m, tuff,	dark brown, laver	with pieces of							68.0m lt 9	80° Pf Pln Cn	
- 00		+	58.07		-			68.07m. poor drillin	a conditions/r	ecoverv.							00.011, 01, 0	, iti, i iii, oii	
-								switch to rock roller	(no core reco	overy).									
[]																			
-																			
-											 								
[]	e																		
-69	Roll																		
$\left \right $																			
-																			
-																			
-70				I		I I											I		
Se	e st	anc	lard	shee	ts fo	or 🛛		GHD Level 3. GHD Tov	ver, 24 Honevs	uckle Drive. Ne	wcastle	e 230	00 Austra	lia				lo.	
de &	etails basi	sof so	abbr f des	evia	tion	s (T: +61 2 4979 99	99 F: +61 2	4979 9988 E:	ntlmail	@gh	nd.com	ററ	CTC			125457	'90

	JRE L	-00	SHE	EI														
	ient :		Por	t of N	lewo	astle		ovolonmont					Н	OI	_E	N	o. GE	BH6
	oject	: n ·	Pro 46	pose Fitzra	a Co w St	nmerc	iai D 5 De	evelopment nison Street Carrington NSW								-	SHEET	16 OF 16
	sitio	n :	384	414 9	אט און אין אין אין אין אין אין אין אין אין אי	335710	4.9 N	MGA2020/ 56 Surface RI · 2 09m ΔF	-ID		Δn	ale	from		riz	90	• • • • • • • •	Processed · SBO
Ri	g Tvr	be :	Sco	ut	_ `	N	lount	ting: Truck Contractor : Total Drilling Pl	y Lto	ł	Dri	iller	: Gl	en G	iears	side		Checked : SJM
Ca	sing	Dia	a. : ·	114m	nm/9	0mm B	arre	I (m): 3.0m Bit: Step 7	, .		Bit C	Conc	litio	n: (Good	ł		Date: 11/03/2021
Da	te St	art	ed : 2	23/2/2	2021	D	ate (Completed : 23/2/2021 Logged by : Nick Leaver			Date	e Lo	ggeo	1:2	6/2/	202	1	Note: * indicates signatures on origin issue of log or last revision of log
	[DRI	LLING	G				MATERIAL								Ν	ATURAL	FRACTURES
Pro	ogres	s		(%				Description		T	Esti	mat	ed	Sp	baci	ng		Additional Data
	ing			sun				ROCK NAME: grain size, colour, tabic and texture, inclusions or minor components, moisture, durability			Str Is	engi " MF	ih Pa	(mm)	(joints	, partings, seams, zones and
Ē	Cas		ш) С	s / F			bo	and [COBBLES / BOULDERS / FILL / TOPSOIL] then	þ	,		- Axial	-				Defec	t type: orientation, roughness
ALE	م م		epth	Los	(%	_ ഗ	lic L	SOIL NAME: colour, plasticity / primary particle characteristics	, Jerir		ი თ	Jametra					and s	hape, composition or coating,
SC	rillin	/ater	Ξ	Core	SD (°	epth etre	raph	secondary and minor components, zoning (origin)	/eatl		0.0		°5 ⊢⊢		00	8		
		<	Δ	9	Ř		G		1	v.	j Z L	≥ī	シロ	50	9 2 5 2 6 6 8	}₽ ⊢+-		
ŀ								COAL: as previous.										
ŀ																		
ŀ																		
ŀ																		
Ī																		
ŀ																		
ŀ																		
ŀ																		
- 71				(0)		71.10											74 4	annad wa d-f4 -1
								SANDSTONE: fine to medium grained, grey.	1			1					No defects	cored, no detect data to minor bedding
┞																	(ATV) log	icaled on geophysics
ŀ							 											
ŀ																		
t							····											
Ī																		
╞	oller																	
-72	k R						::::		Fr									
Ł	Roci						 											
t	-																	
[· · · ·											
┞																		
ŀ																		
ŀ							: : : : : : : :											
ŀ																		
L 72																		
l ′°							····											
ŀ																		
ŀ							· · · ·											
t																		
ſ												🎆						
┞																		
ŀ																		
 			74.00			74 00	: : : : : : : :											
['4								End of Borehole at 74.00 metres.		T								
ŀ																		
ŀ																		
ŀ																		
t																		
ſ																		
ŀ																		
ŀ																		
-75				L			1	I									I	
Se	e sta	and	lard	shee	ts fo	or		GHD			200						Job N	lo.
de	tails	of	abbi	evia	tion	s 🕻	e l	 Level 3, GHD Tower, 24 Honeysuckle Drive, New T: +61 2 4979 9999 F: +61 2 4979 9988 E: n 	castle tImai	e 2 I@	:300 A ghd.c	⊶ustr com	alia					12545790
&	basis	s o	f des	crip	tion	s		CONSULTING GEOTECHNICAL ENGINEE	RS	٨Ň	ND (GEO	LOG	IST	s			12343130

GHD	Port of Newcastle Proposed Commercial Development	DRAWN H Warr CHECKED S MacKenzie	DATE 24/03/2021 DATE 24/03/2021	
	46 Fitzroy Street / 65 Denison Street Carrington NSW	SCALE Not To S	cale	A4
	Core Photographs	PROJECT № 12545790	FIGURE No GBH6 2/6	

GHD	Port of Newcastle Proposed Commercial Development	H Warr CHECKED S MacKenzie	DATE 24/03/2021 DATE 24/03/2021	
	46 Fitzroy Street / 65 Denison Street Carrington NSW	SCALE Not To S	cale	A4
	Core Photographs	PROJECT № 12545790	FIGURE № GBH6 3/6	

GHD	Dart of Neuropatio	DRAWN H Warr	DATE 24/03/2021	
	Proposed Commercial Development	CHECKED S MacKenzie	DATE 24/03/2021	
	46 Fitzroy Street / 65 Denison Street Carrington NSW	SCALE Not To S	cale	A4
	Core Photographs	PROJECT № 12545790	FIGURE № GBH6 4/6	

GHD		DRAWN H Warr	DATE 24/03/2021	
	Proposed Commercial Development	CHECKED S MacKenzie	DATE 24/03/2021	
	46 Fitzroy Street / 65 Denison Street Carrington NSW	SCALE Not To S	cale	A4
	Core Photographs	PROJECT № 12545790	FIGURE № GBH6 5/6	

В	OREHO	LE LO	G SHE	ET							
	lient :	Por	t of Nev	wcastle				HOLE N	0	GB	RH7
b Pi	roject :	Pro	posed (al Develo	opment	t		0.		
	ocation	: 46		Street / 65	Deniso	n Stree	et, Carr	Surface PL 2 20m AUD Angle from Horiz : 00	0	SHEE	Proceeds SPO
	ia Type	· Scol	407.0 E	0337009. Mo	unting	· Truck		Contractor : Total Drilling Pty Ltd Driller : Glen Gearside			Checked : SIM
	ate Star	rted : 2	23/2/20	21	Janang	Dat	te Con	npleted : 23/2/2021 Logged by : Nick Leaver			Date: 03/03/2021
											Note: * indicates signatures on origina issue of log or last revision of log
2	1		.ing								
SCALE (m)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth metres	Graphic Log	USC Symbol	Description [COBBLES/BOULDERS/FILL/TOPSOIL] then SOIL NAME: plasticity / primary particle characteristics, colour, secondary and minor components, zoning (origin) and ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects	Moisture Condition	Consistency / Density Index	Comments/ Observations
					0.10			[TOPSOIL/FILL]: Sandy SILT: brown, fine to medium grained	М		
		Nil	Groundwater Not Encountered	B	0.78			sand, poorly graded, rootlets to 100mm. [FILL]: Silty SAND: fine grained, dark grey. [FILL]: SAND: medium grained, brown, trace shell fragments. [FILL]: SAND: medium grained, brown to pale grey, trace shells and shell fragments.	M M	-	
ŀ					1.80		CI	CLAY: medium plasticity, dark grey, trace organic matter	м	F	ASS confirmed
-2								End of borehole at 2.00 metres. Target Depth			
-5 S	ee star	dard s	sheets	for		GHI	D 3, GHE) Tower, 24 Honeysuckle Drive, Newcastle 2300 Australia	J	ob N	lo.
8	basis	of des	criptic	ons 🛛 🎽		CON	51 2 497 SULTI	NG GEOTECHNICAL ENGINEERS AND GEOLOGISTS			12545790

_	BO	REHOL	E LOC	SHEE	T							
		ent :	Port	of Nev	vcastle					0.	GB	H8
l	Pro	oject :	Prop	bosed (Commercia	l Develo	opment	t st Corr			SHEE	T 1 OF 1
┢	Pos	sition :	. 40 r 384:	387.0 E	6357132.0	ON N	IGA202	20/56	Surface RL: 2.06m AHD Angle from Horiz.: 90'	>		Processed : SBO
F	Rig	Type	: Scou	ıt	Мо	unting	Truck		Contractor : Total Drilling Pty Ltd Driller : Glen Gearside			Checked : SJM
	Dat	te Start	ted: 2	2/2/202	21		Dat	te Con	npleted : 22/2/2021 Logged by : Nick Leaver			Date: 03/03/2021
DRILLING MATERIAL												Note: * indicates signatures on original issue of log or last revision of log
ŀ									Description	_		O rmanita (
	SCALE (M)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth metres	Graphic Log	USC Symbol	[COBBLES/BOULDERS/FILL/TOPSOIL] then SOIL NAME: plasticity / primary particle characteristics, colour, secondary and minor components, zoning (origin) and ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects	Moisture Condition	Consistency / Density Index	Comments/ Observations
-						0.40			[TOPSOIL/FILL]: Sandy SILT: brown to dark grey, fine to medium grained sand, rootlets up to 50mm. [FILL]: GRAVEL: fine to medium, very angular to sub-angular, grey, gravel up to 25mm.	M	_	
	1	Auger		22/2/21	В	0.60			[FILL]: SAND: fine to medium grained, grey/brown, trace coarse gravel and fines.	М	-	-
ŀ						1.80		CH	Sandy CLAY: high plasticity, dark grey, coarse grained sand, trace shell fragments and organic matter (estuarine).	W	F	
ŀ						2 00		01	SAND: medium to coarse grained, dark brown, with fine gravel up to 4mm in size trace shell fragments (marine)		VD	
	3								End of borehole at 2.00 metres. Target Depth			
╞	5 Se det & k	e stand tails of basis c	dard s f abbro	heets eviatio	for ons	HD	GHI Level T: +6	D 3, GHE 31 2 497	D Tower, 24 Honeysuckle Drive, Newcastle 2300 Australia 79 9999 F: +61 2 4979 9988 E: ntlmail@ghd.com	J	ob N	lo. 1 2545790

Ľ

GHD_GEO_LIBRARY 2.00.GLB GrfcTbI DG PHOTO CORE PHOTO 1 PER PAGE 12545790 DENISON ST CARRINGTON.GPJ <<DrawingFile>> 23/03/2021 13:21 10.02.00.04

 $\label{eq:product} \textbf{Appendix} \ \textbf{D} - \text{Cone Penetrometer Test plots}$

2/4

1.48

Ph. 0408 292638

C10CFIIP.C19137 Geotechnical Investigation Cone no .: Project: 12545790 **Denison St Carrington** Project no .: Location: Position: 0, 0 CPT-3 CPT no .: 1/3

CPT-4

GEOTECHNICAL TESTING	150 cm ² 10 cm ²	G.L.: 0.00 m	W.L.: -1.70 m	Date:	12/02/2021
	Project:	Geotechnical Investi	gation	Cone no.:	C10CFIIP.C
Ph. 0408 292638	Location:	Denison St Carringto	on	Project no .:	12545790
	Position:	0, 0		CPT no.:	CPT-5

1/3

1 44

-
Y
7
-

Position:

0, 0

CPT no .:

CPT-5A

1/3

Appendix E – Wireline logging / ATV reports

1:20 BH05 TELEVIEWER

LOG PARAMETERS

MATRIX DENSITY : 2.65	NEUTRON MATRIX : SANDSTONE	MATRIX DEL	TA T:177
MAGNETIC DECL : 0	ELECT. CUTOFF : 99999	BIT SIZE	: 9.6 CM
PRESENTATION : \804A_JL44.0 ()4/22/2020	DISPLAY7_JI	L44

	CALIPER4			METERS
	⁰ INCH ³⁶			
	CALIPER3	SANGB		
	⁰ INCH ³⁶	0 DEG 360		
CALIPERY	CALIPER2	SANG		
⁰ CM ³⁶	⁰ INCH ³⁶	⁰ DEG ⁴		
CALIPERX	CALIPER1	GAMMA	²⁰ T_TIMEUSEC ¹¹⁴ ⁰	AMPLMV 1500
⁰ CM ³⁶	⁰ INCH ³⁶	⁰ API-GR ³⁰⁰	0 180 360 0	180 360
				50
				52
				53

1:20 **BH06 TELEVIEWER**

LOG PARAMETERS

MATRIX DENSITY : 2.65	NEUTRON MATRIX : SANDSTONE	MATRIX DEL	TA T: 177
MAGNETIC DECL : 0	ELECT. CUTOFF : 99999	BIT SIZE	: 9.6 CM
PRESENTATION \804A . 44.0 (14/22/2020	DISPLAYZ J	1 44

	M. N. K				70
<u> </u>					
B					
~					73
\sum_{λ}	M				
	MW N	E E E			
		<pre></pre>			
$\sum_{i=1}^{n}$					
⁰ CM ³⁶		⁰ API-GR ³⁰⁰	0 180 360	0 130	260 / 4
CALIPERX	CALIPER1	GAMMA	²⁰ T_TIMEUSEC ¹¹⁴	^o AMPLMV	1500
⁰ CM ³⁶		⁰ DEG ⁴			
CALIPERY	CALIPER2	SANG			
	⁰ INCH ³⁶	0 DEG 360			
	CALIPER3	SANGB			
	⁰ INCH ³⁶				
	CALIPER4				METERS

Appendix F – Laboratory test reports

Material Test Pepert						Report No: SYD2100347			
Wateria	ai rest kep						Issue No: 1		
Client: Project:	Port of Newcastle L4, 251 Wharf Rd Newcastle NSW 23 12545790 Carringtor	00	Accredited for compliance with ISO / IEC 17025 - Testing						
			THIS DOCUMEN	Date of Issue: 17/03/20 T SHALL NOT BE REPRODUC	21 ED EXCEPT IN FULL				
Sample De	etails				Particle S	ize Distribution			
GHD Sample Sampled By BH / TP No. Depth (m) Soil Descript	No SYD21-00 Sampled b BH1 0.85-1.00 tion SAND trac	73-01 by GHD ce Clay and Gr	avel: grey/browi	1	Method: Drying by: Date Tested: Note: Sieve Size 13.2mm 9.5mm 6.7mm 4.75mm 2.36mm	AS 1289.3.6.1 Oven 11/03/2021 Sample Washed % Passing 100 99 98 97 95	Limits		
Other Test	t Results				1.18mm	92 75			
Description Moisture Cont Date Tested Standard MD Standard OM Retained Siev Oversize Mate Curing Time (Date Tested CBR at 2.5mm Dry Density bu Density Ratio Moisture Content Moisture Ratio Dry Density at Density Ratio Swell (%)	tent (%) D (t/m ³) IC (%) /e (mm) erial (%) h) m (%) efore Soaking (t/m ³) before Soaking (%) t before Soaking (%) o before Soaking (%) fter Soaking (t/m ³) after Soaking (%)	Method AS 1289.2.1. AS 1289.5.1.1 - AS 1289.6.1.1 -	Result 1 9.5 9/03/2021 9/03/2021 2017 1.79 11.5 19 0 32 9/03/2021 9/03/2021 2017 16 1.70 95.0 11.6 99.0 1.70 95.0 1.70 0.0	Limits	600μm 425μm 300μm 150μm 75μm	75 47 25 8 5			
Moisture Cont	tent of Top 30mm (%)		15.1		Chart				
Moisture Content Compaction H Surcharge Ma Period of Soa Retained on 1 CBR Moisture Sample Moist Date Tested	t of Remaining Depth (%) Hammer Used ass (kg) king (Days) I9 mm Sieve (%) content Method cure Content	A A	16.5 Standard 4.50 4 0 S 1289.2.1.1 S 1289.2.1.1 16/03/2021		% Passing 100 100 100 100 100 100 100 10	en e	4.76m 4.76m Of mm Bennin Hanni		

Motorial Toot Donort						Report No: SYD2100348		
wateria	al lest Rep	ort			Issue No: 1			
Client: Project:	Port of Newcastle L4, 251 Wharf Rd Newcastle NSW 23 12545790 Carringtor	00 1		Accredited for compliance with ISO / IEC 17025 - Testing				
			No: 679 Date of Issue: 17/03/2021 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL					
Sample De	etails				Particle S	ize Distribution		
GHD Sample NoSYD21-0073-02Sampled BySampled by GHDBH / TP No.BH2Depth (m)0.40-2.00Soil DescriptionSAND with Gravel: yellow/grey/brown				Method: Drying by: Date Tested: Note: Sieve Size 37.5mm 26.5mm 19.0mm 13.2mm 9.5mm	AS 1289.3.6.1 Oven 4/03/2021 Sample Washed % Passing 100 99 98 97 96	Limits		
Other Test	t Results				6.7mm	94		
Description		Method	Result	Limits	2.36mm	93 90		
Description Moisture Cont Date Tested Standard MD Standard OM Retained Siev Oversize Mate Curing Time (I Date Tested CBR at 5.0mr Dry Density Batio Moisture Content Moisture Content Density Ratio Swell (%)	tent (%) D (t/m³) IC (%) ve (mm) erial (%) h) m (%) efore Soaking (t/m ³) before Soaking (%) t before Soaking (%) t before Soaking (%) o before Soaking (t/m ³) after Soaking (%) tent of Top 30mm (%)	Method AS 1289.2.1.1 AS 1289.5.1.1 - 2 AS 1289.6.1.1 - 2	Result 9.2 1/03/2021 2017 1.74 13.0 19 2 32 2/03/2021 2017 30 1.67 96.0 12.9 99.5 1.68 96.0 -0.5 15.0	Limits	2.36mm 90 1.18mm 85 600µm 64 425µm 38 300µm 16 150µm 4 75µm 2			
Moisture Content of Remaining Depth (%) Compaction Hammer Used Surcharge Mass (kg) Period of Soaking (Days) Retained on 19 mm Sieve (%) CBR Moisture Content Method Sample Moisture Content Date Tested		AS AS	15.0 16.3 Standard 4.50 4 2 AS 1289.2.1.1 AS 1289.2.1.1 8/03/2021		% Passing	under the second	Bármi - Bármi	

Material Test Report						Report No: SYD2100349 Issue No: 1			
Client:	Port of Newcastle L4, 251 Wharf Rd Newcastle NSW 23	00			NATA	Accredited for compliance wit Testing	h ISO / IEC 17025 -		
Project:	12545790 Carringtor	1	NATA Accreditation Approved Signatory: Jure G Vukovic No: 679 Date of Issue: 17/03/2021 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL						
Sample D	etails				Particle S	ize Distribution			
GHD Sample Sampled By BH / TP No. Depth (m) Soil Descript	No SYD21-00 Sampled I BH7 0.50-1.50 tion SAND: ye)73-03 by GHD llow/grey/browr	1		Note: Sieve Size 26.5mm 19.0mm 13.2mm 9.5mm 6.7mm 4.77	AS 1289.3.6.1 Oven 4/03/2021 Sample Washed % Passing 100 100 99 99 99	Limits		
Other Tes	t Results				2 36mm	98 97			
Description		Method	Result	Limits	1.18mm	95			
Moisture Con	tent (%)	AS 1289.2.1.	1 9.0		600µm	78			
Date Tested			1/03/2021		425µm	54			
Standard MD	DD (t/m³)	AS 1289.5.1.1 -	201/ 1.67		1300µm	30			
Retained Siev	ve (mm)		19		75um	3			
Oversize Mate	erial (%)		0		l'opin	C C			
Curing Time ((h)		32						
Date Tested			2/03/2021						
CBR at 2.5m Dry Density b Density Ratio Moisture Conten Moisture Ratio Dry Density a Density Ratio	m (%) before Soaking (t/m ³) before Soaking (%) it before Soaking (%) o before Soaking (%) ifter Soaking (t/m ³) after Soaking (%)	AS 1289.6.1.1 -	2017 11 1.59 95.5 13.1 100.5 1.59 95.5						
Swell (%)	tont of Ton 20mm (%)		0.0		Chart				
Moisture Content of Top 30mm (%)16.9Moisture Content of Remaining Depth (%)18.6Compaction Hammer UsedStandardSurcharge Mass (kg)4.50Period of Soaking (Days)4Retained on 19 mm Sieve (%)0CBR Moisture Content MethodAS 1289.2.1.1Sample Moisture ContentAS 1289.2.1.1Date Tested8/03/2021					56 Passing				
						200 mm Comment Serve Serve 5 Serve	4.2mm 8.5mm 13.2mm 19.0mm 26.5mm		

Material Test Report						Report No: SYD2100350			
						Accredited for compliance wi	th ISO / IEC 17025 -		
Client:	Port of Newcastle					resting			
	I 4 251 Wharf Rd				NATA	5			
	Newcostle NOW 22	00			NAIA	× -			
	Newcastle NSW 23	00							
Duciest	10515700 Corrigator								
Project:	12545790 Carnington	1			NATA Accreditatio	on Approved Signatory. Jun			
					Date of Issue: 17/03/20	21			
					THIS DOCUMEN	T SHALL NOT BE REPRODUC	ED EXCEPT IN FULL		
Sample De	etails				Particle S	ize Distribution	l		
GHD Sample	No SYD21-00	73-04			Method:	AS 1289.3.6.1			
Sampled By	Sampled b	by GHD			Drying by:	Oven			
BH / TP No.	BH8				Date Tested:	11/03/2021			
Depth (m)	0.60-1.20				Note	Sample Mashad			
Soil Descript	ion SAND trac	ce Clay and G	ravel: grey/browr	ı	Note:	sample washed			
					Sieve Size	% Passing	Limits		
					19.0mm	100			
					13.2mm	100			
					9.5mm	98			
					6.7mm	97			
					4.75mm	95			
Other Test	t Results				2.36mm	92 88			
Description		Method	Result	Limits	600um	70			
Moisture Cont	tent (%)	AS 1289.2.1	.1 5.5		425µm	48			
Date Tested			9/03/2021		300µm	30			
Standard MD	DD (t/m³)	AS 1289.5.1.1 ·	2017 1.83		150µm	13			
Standard OM	IC (%)		10.5		75µm	7			
Retained Siev	/e (mm)		19						
Oversize Mate	erial (%)		0						
Curing Time (h)		32						
Date Tested	(0.1)		9/03/2021						
CBR at 2.5m	m (%)	AS 1289.6.1.1 ·	· 2017 14						
Density Density be	elore Soaking (t/m°)		1./4						
Density Ratio	before Soaking (%)		95.U						
Moisture Ratio	n before Socking (%)		10.3 00 0						
Dry Density at	fter Soaking (t/m ³)		1 74						
Density Ratio	after Soaking (%)		95.0						
Swell (%)	anter 2001g (70)		0.0		Chart				
Moisture Cont	tent of Top 30mm (%)		14.2		Unart				
Moisture Content	t of Remaining Depth (%)		15.0		N. Deserter				
Compaction Hammer Used Standard					¹⁰⁰ [
Surcharge Mass (kg) 4.50					90				
Period of Soaking (Days) 4					80				
Retained on 19 mm Sieve (%) 0				60					
CBR Moisture Content Method AS 1289.2.1.1					50				
Sample Moist	ure Content	A	S 1289.2.1.1		40				
Date Tested			16/03/2021		30				
					20				
					76µn 150µn	300µr 405µr 1.18mm 2.38mm	4.75m 8.5m 9.5m 13.2m 19.0m		
						Sieve			
Shear Vane (Pilcon) - Report

Report No: SYD2100351

Client:	Port of New	castle			Job No:	12545790		
Project:	Proposed C	ommercial	Developm	ent		Sample No:	-	
Location:	65 Denison	St, Carringt	on, NSW				Test Hole No:	-
							Depth (m) :	-
				Т	est Procedure	: Inhouse GG1209		
	Sample ID					SHEAR VANE T	EST INFORMATION	
BH / TP	Sample Depth (m)	Test Depth (m)	Туре	Rotation Rate (°/min.)	Vane Size (mm)	Vane Shear Strength, s (kPa)	Comments	
BH03	15.5-16.0	15.9	Peak	360	19	113	CLAY; grey	
			Residual	360	19	34		
BH04	15.9-16.35	16.25	Peak	360	19	116	CLAY; dark grey	
			Residual	360	19	28		
			Peak					
			Residual					
			Peak					
			Residual					
			Peak					
			Residual					
			Peak					
			Residual					
			Peak					
			Residual					
			Peak					
			Residual					
			Peak					
			Residual					
			Peak					
			Residual					
			Peak					
			Residual					
			Peak					
			Residual					
			Peak					
			Residual					
			Peak					
			Residual					
			Peak					
			Residual					
			Peak					
			Residual					
NOTES:								
Tested By:	AM							
, Date Tested:	1/03/2021			GHE	Pty Ltd	t Otroot Automa bi	2.141 2064	
Checked Bv:	JV		GR		phone: (02)	1 Street Artarmon, N.S 9462 4860	5.00. 2064	
Date:	17/03/2021							

CERTIFICATE OF ANALYSIS

Work Order	EB2105109	Page	: 1 of 4
Client	: GHD PTY LTD	Laboratory	Environmental Division Brisbane
Contact	: SAM MACKENZIE	Contact	: Andrew Epps
Address	: PO BOX 5403	Address	: 2 Byth Street Stafford QLD Australia 4053
	NEWCASTLE WEST NSW, AUSTRALIA 2302		
Telephone	·	Telephone	: +61 7 3552 8639
Project	: Denison St, Carrington	Date Samples Received	: 26-Feb-2021 09:30
Order number	: 12545790	Date Analysis Commenced	: 01-Mar-2021
C-O-C number	:	Issue Date	: 04-Mar-2021 11:54
Sampler	:		Hac-MRA NATA
Site	:		
Quote number	: EN/005		Accorditation No. 035
No. of samples received	: 6		Accredited for compliance with
No. of samples analysed	: 6		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ben Felgendrejeris	Senior Acid Sulfate Soil Chemist	Brisbane Acid Sulphate Soils, Stafford, QLD
Ben Felgendrejeris	Senior Acid Sulfate Soil Chemist	Brisbane Inorganics, Stafford, QLD
Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

 \sim = Indicates an estimated value.

- ASS: EA037 (Rapid Field and F(ox) screening): pH F(ox) Reaction Rate: 1 Slight; 2 Moderate; 3 Strong; 4 Extreme
- EA037 ASS Field Screening: NATA accreditation does not cover performance of this service.

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH1 0.45m	BH2 1.4m	BH3 1.5-1.95m	BH3 3.0-3.45m	BH4 1.5-1.95m
		Sampli	ng date / time	24-Feb-2021 00:00				
Compound	CAS Number	LOR	Unit	EB2105109-001	EB2105109-002	EB2105109-003	EB2105109-004	EB2105109-005
				Result	Result	Result	Result	Result
EA002: pH 1:5 (Soils)								
pH Value		0.1	pH Unit	8.6	8.1	8.0	8.9	8.4
EA010: Conductivity (1:5)								
Electrical Conductivity @ 25°C		1	µS/cm	91	413	196	98	240
EA037: Ass Field Screening Analysis								
ø pH (F)		0.1	pH Unit	8.9	8.0	8.0	8.7	8.0
ø pH (Fox)		0.1	pH Unit	6.1	5.7	1.9	4.6	5.5
Ø Reaction Rate		1	-	2	2	3	1	2
EA055: Moisture Content (Dried @ 105-11	0°C)							
Moisture Content		1.0	%	15.6	19.6	42.6	21.5	27.9
ED040S : Soluble Sulfate by ICPAES								
Sulfate as SO4 2-	14808-79-8	10	mg/kg	10	870	190	120	320
ED045G: Chloride by Discrete Analyser								
Chloride	16887-00-6	10	mg/kg	10	30	50	20	20

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH7 1.6m				
		Sampli	ng date / time	24-Feb-2021 00:00				
Compound	CAS Number	LOR	Unit	EB2105109-006				
				Result				
EA002: pH 1:5 (Soils)								
pH Value		0.1	pH Unit	8.7				
EA010: Conductivity (1:5)								
Electrical Conductivity @ 25°C		1	µS/cm	232				
EA037: Ass Field Screening Analysis								
ø pH (F)		0.1	pH Unit	8.8				
ø pH (Fox)		0.1	pH Unit	2.2				
Ø Reaction Rate		1	-	4				
EA055: Moisture Content (Dried @ 105-110)°C)							
Moisture Content		1.0	%	33.4				
ED040S : Soluble Sulfate by ICPAES								
Sulfate as SO4 2-	14808-79-8	10	mg/kg	300				
ED045G: Chloride by Discrete Analyser								
Chloride	16887-00-6	10	mg/kg	190				

CERTIFICATE OF ANALYSIS

Work Order	EB2106388	Page	: 1 of 3
Client	: GHD PTY LTD	Laboratory	Environmental Division Brisbane
Contact	: SAM MACKENZIE	Contact	: Andrew Epps
Address	: PO BOX 5403	Address	: 2 Byth Street Stafford QLD Australia 4053
	NEWCASTLE WEST NSW, AUSTRALIA 2302		
Telephone	:	Telephone	: +61 7 3552 8639
Project	: Denison St, Carrington	Date Samples Received	: 09-Mar-2021 15:32
Order number	:	Date Analysis Commenced	: 11-Mar-2021
C-O-C number	:	Issue Date	: 11-Mar-2021 16:31
Sampler	:		Hac-MRA NATA
Site	:		
Quote number	: EN/005		Accorditation No. 835
No. of samples received	: 3		Accredited for compliance with
No. of samples analysed	: 3		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ben Felgendrejeris	Senior Acid Sulfate Soil Chemist	Brisbane Acid Sulphate Soils, Stafford, QLD

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

- Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting
 - ^ = This result is computed from individual analyte detections at or above the level of reporting
 - ø = ALS is not NATA accredited for these tests.
 - \sim = Indicates an estimated value.
- ASS: EA033 (CRS Suite):Retained Acidity not required because pH KCI greater than or equal to 4.5
- ASS: EA033 (CRS Suite): Laboratory determinations of ANC needs to be corroborated by effectiveness of the measured ANC in relation to incubation ANC. Unless corroborated, the results of ANC testing should be discounted when determining Net Acidity for comparison with action criteria, or for the determination of the acidity hazard and required liming amounts.
- ASS: EA033 (CRS Suite): Liming rate is calculated and reported on a dry weight basis assuming use of fine agricultural lime (CaCO3) and using a safety factor of 1.5 to allow for non-homogeneous mixing and poor reactivity of lime. For conversion of Liming Rate from 'kg/t dry weight' to 'kg/m3 in-situ soil', multiply 'reported results' x 'wet bulk density of soil in t/m3'.

Analytical Results

Sub-Matrix: PULP (Matrix: SOIL)			Sample ID	BH1 0.45m	BH3 1.5 - 1.95m	BH7 1.6m	
		Sampli	ng date / time	24-Feb-2021 00:00	24-Feb-2021 00:00	24-Feb-2021 00:00	
Compound	CAS Number	LOR	Unit	EB2106388-001	EB2106388-002	EB2106388-003	
				Result	Result	Result	
EA033-A: Actual Acidity							
рН КСІ (23А)		0.1	pH Unit	10.6	6.9	7.9	
Titratable Actual Acidity (23F)		2	mole H+/t	<2	<2	<2	
sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S	<0.02	<0.02	<0.02	
EA033-B: Potential Acidity							
Chromium Reducible Sulfur (22B)		0.005	% S	0.024	0.860	1.30	
acidity - Chromium Reducible Sulfur		10	mole H+ / t	15	537	814	
(a-22B)							
EA033-C: Acid Neutralising Capacity							
Acid Neutralising Capacity (19A2)		0.01	% CaCO3	12.4	1.90	2.58	
acidity - Acid Neutralising Capacity		10	mole H+ / t	2470	380	515	
(a-19A2)							
sulfidic - Acid Neutralising Capacity		0.01	% pyrite S	3.96	0.61	0.83	
(s-19A2)							
EA033-E: Acid Base Accounting							
ANC Fineness Factor		0.5	-	1.5	1.5	1.5	
Net Acidity (sulfur units)		0.02	% S	<0.02	0.45	0.75	
Net Acidity (acidity units)		10	mole H+ / t	<10	283	470	
Liming Rate		1	kg CaCO3/t	<1	21	35	
Net Acidity excluding ANC (sulfur units)		0.02	% S	0.02	0.86	1.30	
Net Acidity excluding ANC (acidity units)		10	mole H+ / t	15	537	814	
Liming Rate excluding ANC		1	kg CaCO3/t	1	40	61	

Appendix G – GHD 2020b: Mine Subsidence Assessment report

Port of Newcastle Operations Pty Ltd

46 Fitzroy Street, Carrington Mine Subsidence Assessment

May 2020

Table of contents

1.	Intro	duction	1
2.	Desc	ription of geology and mining	2
	2.1	Geological setting	2
	2.2	Borehole Seam depth	4
	2.3	Borehole Seam thickness and working height	5
3.	Pillar	stability and subsidence	10
	3.1	Introduction	10
	3.2	Pillar stability by UNSW rectangular pillar formula	11
	3.3	Surface subsidence	12
4.	SA N	ISW Policy and development options	16
	4.1	Introduction	16
	4.2	SA NSW Merit Assessment Policy	16
5.	Sum	mary and conclusions	18
	5.1	Summary	18
	5.2	Conclusions	19
6.	Limit	ations	20
7.	Refe	rences	21

Table index

Table 2-1	Mine roof spot levels beneath site (below high water mark)	4
Table 2-2	Borehole Seam thickness	5
Table 3-1	Summary of UNSW pillar stability calculations	11
Table 3-2	Factor of safety to likelihood of failure correlation (Galvin <i>ibid</i>)	12
Table 4-1	SA NSW Building Categories	16
Table 4-2	SA NSW Uncertainty Factor calculation	17
Table 5-1	SA NSW subsidence design parameters	

Appendices

Appendix A – Figures

1. Introduction

GHD was engaged by Port of Newcastle (PON) to undertake a mine subsidence assessment for four proposed development options at a currently vacant site, 46 Fitzroy Street, Carrington (Lot 33, DP 1078910).

The site and surrounding area is undermined by abandoned mine workings in the Borehole Seam of coal at about 67 m to 70 m depth. Mining occurred between 1884 to 1904 at the Wickham and Bullock Island Colliery.

The subject site and surrounding area is within a gazetted mine subsidence district administered by Subsidence Advisory NSW (SA NSW) under the *Coal Mine Subsidence Compensation Act 2017.* SA NSW is an approval authority for surface improvements.

Development options being considered include on-ground car parking and light industrial or commercial buildings between one and three storeys as follows:

Option 1	Two buildings: one of 3 storeys and the other 2 storeys with on- ground parking
Option 2	Two buildings: one of 3 storeys and the other 2 storeys with undercroft and on-ground parking
Option 3	Two buildings: both 2 storeys with on-ground parking
Option 4	Three buildings: all 2 storeys with on-ground parking.

For non-residential development such as this, SA NSW assessment will be based on their *Development Application – Merit Assessment Policy* (SA NSW, 2018).

The purpose of this report is initially to inform PON on development options with respect to mine subsidence constraints and anticipated SA NSW requirements. Secondly, this report could be submitted to SA NSW as part of Development Applications or formal enquiries to assist SA NSW with making their determinations.

This report first presents the assessment findings, including descriptions of the anticipated subsurface conditions (geology) and mining. The report then discusses subsidence hazards and the likelihood that such events will occur. Lastly, the report relates the anticipated SA NSW requirements for the development options being considered by PON.

2. Description of geology and mining

2.1 Geological setting

The site comprises a land surface raised above natural level by placement of fill over alluvial soil deposits. The surface elevation is about 2 to 3 m above Australian Height Datum (AHD).

The depth to top of bedrock is interpreted to be between 40 and 50 m based on reference to a geotechnical report for the Carrington grain silo (Public Works, 1984) and sections of both the Wickham and Bullock Island Colliery "Winding Shaft" and "Fan Shaft" included on Record Tracing RT579 (Wickham and Bullock Island Colliery. 1906). The location of these features relative to the site is shown in the below figure.

Figure 2-1 Site location and selected surrounding features

The shaft sections extracted from RT579 are shown in the figure below with annotations provided to show our interpretation of them.

2 | GHD | Report for Port of Newcastle Operations Pty Ltd - 46 Fitzroy Street, Carrington, 12527619

Note that the original downhole descriptions align with the base of each unit to which they refer.

Figure 2-2 Shaft sections from RT579 with annotations in blue

While the geotechnical characteristics of the alluvial soils beneath the site are not known, they are likely to be primarily sand and silty sand units in the upper 15 m and, below this, layers of clay and sand. This is illustrated by a cross section included in the *Third report on the collieries adjacent to Ferndale* (NSW Royal Commission on Collieries. 1886), a portion of which is shown below, with annotations in blue.

Figure 2-3 Section cc from Plan 1 NSW Royal Commission third report (1886)

Bedrock is expected to be interbedded sandstone and siltstone with minor tuffaceous beds and carbonaceous laminations of the Lambton Formation. This includes the Borehole Seam and below this the Waratah Sandstone unit, the base (oldest unit) of the Newcastle Coal Measures.

Further discussion on the thickness and depth of the Borehole Seam, as well as a geological fault that passes through the site is presented in the following sections.

2.2 Borehole Seam depth

The depth of the Borehole Seam is known from mining records. In particular, the two plans of the workings referred to here as M12137 and RT579 respectively. Extracts of these are included in Appendix A as Figure 2 and Figure 3 respectively. These plans were supplied by the NSW Department of Planning Industry and Environment to GHD under a confidentiality deed. We draw your attention to the limitations and disclaimer included in Section 6 and on the figures.

These plans both show the mine workings of the Wickham and Bullock Island Colliery in the Borehole Seam yet they show slightly different information and so review of both is useful.

RT579 is the mine record tracing for mining of the Borehole Seam in the Wickham and Bullock Island Colliery. It is the formal record of mining, updated as mining progressed. RT579 is signed *"Examined and found correct, 13th January 1906, John T Tennant, Insp of Collieries".* Despite this assertion of correctness, the plan should not be considered an accurate representation of the final mine workings.

The M12137 plan is of the "Delta Collieries" of which the Wickham and Bullock Island Colliery was one, along with adjacent mines of the time such as Hetton Colliery and Stockton Colliery, that were also mining the Borehole Seam under the tidal Hunter River "delta". The M12137 plan is not dated formally although it does include dates of mining, survey traverses, names of main headings and bords, and importantly spot levels of the mine roof. For example, the winding shaft has a spot level of 202.55 feet (61.7 m) and the fan shaft 246.00 feet (75.0 m). RT579 also includes spot levels referenced to below high water mark.

The table below provides a comparison of spot levels from RT579 and M12137.

Survey Station	Location	RT579	M12137	Difference
2a	western edge of the site along the	221.84 feet (67.6 m)	221.8 feet (67.6 m)	No difference
483	"Engine Road" – west of fault	225.60 feet (68.8 m)	224.86 feet (68.5 m)	RT579 roof is 0.74 m lower
483a	south edge of site – west of fault	227.05 feet (69.2 m)	-	RT579 roof west of fault is
495	south edge of site – east of fault	-	224.64 feet (68.5 m)	roof east of fault
Between 495 and 496	southeast corner of the site – east of fault	227.80 feet (69.4 m)	-	0.23 m lower than at 483a

Table 2-1 Mine roof spot levels beneath site (below high water mark)

The above roof levels agree generally with a seam dip of 1 in 40 (1.4°) to the southeast between the winding shaft and fan shaft as indicated on RT579.

The difference between roof levels on RT579 and M12137 of about 0.73 m is unresolved. It may be due to a change in datum or survey errors.

Both plans show a fault passing through the Borehole Seam beneath the site (red line in Figure 2 and Figure 3) with RT579 indicating a 6 foot (~1.8 m) displacement with the downside on the east as indicated by convention with the direction of the arrow. However, the difference in roof level across this fault between station 483a and 495, about 20 m apart, appears to be 0.73 m and in the wrong direction. The reason for this is also unresolved.

2.3 Borehole Seam thickness and working height

The thickness of the coal seam is shown on RT579 as graphical sections at specific locations as well as referenced in other historical records. As well as indicating the overall thickness of coal, the basic lithology of the seam is often also provided and gives a basis for comparison of the mining height (the height of coal mined) to other historical records.

Mining at Wickham and Bullock Island Colliery initially consisted on taking the lower part of the seam (the bottoms). This included a stone band called the "jerry" with another stone band called the "morgan" forming the roof. Perhaps months to years later (after 1890), the main part of the seam (the tops) was also taken with this including the morgan and coal above it, sometimes called "little tops".

More specific information about mining height and seam thickness is available from historic sources and is useful to compare. The table below provides a summary.

Location	Sourco	Total	Mined seam (m)	
Location	Source	Seam (m)	Tops ¹	Bottoms ²
Winding shaft	Section from RT579. 1906	5.7	-	-
Winding shaft	Section from NSW Royal Commission on Collieries. 1886	5.9	4.5	1.4
Fan shaft	Section from RT579. 1906	6.5	-	-
Pre 1890 workings	Kingswell. 1890 p.42	5.6	-	2.4 to 3.7 ³
Pre 1886 workings – south side dips section	NSW Royal Commission on Collieries. 1886	-	-	1.8
Pre 1890 workings	NSW Royal Commission on Collieries, 1886	5.7	4.6	1.5 to 1.8

Table 2-2 Borehole Seam thickness

1. Tops: second workings Morgan up to roof coal (includes the morgan)

2. Bottoms: first workings base of seam up to the morgan (includes the jerry)

3. "The total thickness worked varies from 8ft. to 12ft., but eventually the top coal will also be taken down."

The mining height reported by Kingswell (1890) is at odds with primary sources such as the record tracing and Royal Commission report. While it may be an error, it could also refer to a part of the mine (pre 1890) where they mined a thicker section, including both the morgan and jerry, which was later abandoned in favour of a thinner bottoms using the morgan as the roof.

In the vicinity of the site, the total seam thickness is expected to be about 6 m with the bottoms comprising about 1.8 m and the tops 4.2 m such that the maximum mining height (tops and bottoms) was the full seam thickness of 6 m.

2.3.1 Mining layout

The mining layout is known as bord and pillar working. Initially headings were developed, in this case passing down the western side of the site, and off these, bords were extracted (with short "cut-throughs" between adjacent bords) to form pillars of coal (coal remaining in place). Areas of pillars between main bords are called districts.

The extent of mining in 1886 is indicated in Plan 5 of the NSW Royal Commission on Collieries report (1886). An extract of this is shown in Figure 2-4 (below) together with the approximate location of the site. The text west of Fitzroy Street reads, "Faces 9th July 1886". From this we know that mining beneath the site occurred after 1886. From records of subsidence events discussed in Section 2.3.2, we know mining in this district was complete ten years later in 1896, though probably earlier.

A fire in December 1903 forced the company to seal and abandon the northern workings (Coulin 1995) and by 1905 all mining had ceased (Department of Mines NSW.1905).

Figure 2-4 Extract from 1886 Royal Commission third report, Plan 5

Up to at least 1890, only the bottom coal was being mined and the nominal mining layout was for 6 yard (\sim 5.5 m) wide bords and 8 yard (\sim 7.3 m) wide pillars. Later, the layout was altered to have both pillars and bords nominally 6 yard (\sim 5.5 m) wide (Kingswell. 1890).

Scaling off RT579, the nominal bord and pillar width beneath the site appears to be 6 yards (~5.5 m). However, this was what was aimed for rather than what was achieved. The actual bords as mined are expected to be slightly wider and the pillars slightly narrower.

Beneath the site, the grid of pillars is interrupted by a fault. East of the fault, the pillars are more or less regular. However, between the fault and the development headings, the pillars are shortened to accommodate, in part, a change in bord orientation made necessary by the fault.

The taking of "tops" occurred in many areas of the mine, including beneath the site. This is incidated on RT579 and M12137 as either shading or "T + B". With reference to Figure 3 in Appendix A, mining of the tops occurred:

- In every bord west of the site, on the other side of the (main) development headings
- Beneath the site in every second or third bord
- To the north, south and east of the site, as above (on the eastern side of the main headings)

Mining a 6 m thick section of coal by hand would have been very dangerous. However, once the timber supports were removed and the morgan released, the tops are likely to have readily fallen to the floor where they could be loaded from adjacent bords in relative safety.

2.3.2 Known subsidence events

Historical records provide details of trough subsidence events that were observable on the ground surface as they were occurring underground as pillar 'crushes'. In the area of interest around Carrington, subsidence events occurred in 1896 and 1901/02. A summary of these events from historical references is provided below.

The approximate boundaries of these crushes are understood to be shown on a Delta Collieries overview map. This map is not part of the NSW Department of Planning Industry and Environment collection and was not available for our use. SA NSW may possess a digitised version indicating a subsidence event about 60 m to the south of the site and to the west of the development headings which pass down the western edge of the site. This is believed to be part of the 1896 Darvall Street crush described below.

1896

On page 87 of the 1896 annual mine report (Department of Mines NSW,1896) is the following entry: "W&BI Colliery, In August last an extension fall of roof took place in the dip workings, stopping the mine for 4 weeks. The fall originated and spread over a large area of 6 yard bords and 6 yard pillars workings from which the full section of available coal had been taken. Since the accident the manager has been asked to increase the size of future pillars, and refrain as far as possible from extracting "top band" coal in the bords. To these requests the manager agreed, and is now making all future pillars 8 yards wide and no "top band" coal was being got during the time of last inspection".

On August 25th 1896, The Sydney Morning Herald reported: "...the appearance of a "crack" in the main road...", "...to extend from 50 yards from the north end of the Carrington Bridge 193 yards north, the widest part being about half-way, and there about 4½in. in width." This and the remainder of the article refers to the Wickham not Carrington side of Thorsby Creek.

On September 7th 1896, the Newcastle Morning Herald and Miners' Advocate reported: "In the 4th right hand ganning bord, up as far as the first fall took place, we found that the last big fall had crushed her very badly just here. It is our opinion that she has crushed down right from the 7th right hand almost back to the 2nd right hand. We may mention that we saw no signs of extra water coming off."

The following day this same paper reported: "On Monday morning 24th ultimo [latest], the miners employed on the dip side of the drawing shaft ceased work and left the mine because of an extensive fall of roof which took place the previous day in the abandoned workings of the 4th, 5th and 6th right hand districts."

The districts are labelled on M12137. The subject site is within the first left hand district and opposite the first right hand district. The second right hand bord is about 70 m south of the site. This area is shown in RT579 to have been mined with tops and bottoms in every bord. It is also crossed by several faults that roughly run parallel with Thorsby Creek.

On the 10th September 1896, The Sydney Morning Herald reported that: "another fall of roof... alleged crush took place". This was clearly visible on the eastern approach to the Wickham and Carrington Bridge which connects Denison Street Carrington with Hannell Street, Wickham. "Ominous cracks on the surface of the eastern approach to the bridge, about 7 in number, appear about 100 yards [~90 m] from Denison Street or 30 yards [~27 m] from the bridge coming south. Some are 2m in width, and some are less. Part of the centre of the approach to the bridge from Denison Street approach appears to have suffered a decadence of an inch or two and a portion of the handrail has given way. Pinching was heard (rumbling noises)".

This above bridge is the now removed Darvall Street bridge rather than the existing Cowper Street bridge which was a railway bridge at this time. This is shown on Figure 2 in Appendix A although Darvall Street should be about 60 m south of the site rather than along its southern boundary. The below map from 1910 shows this (Barrett, 1910) – see Figure 2-5.

Coulin (1995) describes this as: "A "crush" in workings of the Wickham Bullock Island Colliery in September 1896, which halted work for many weeks, caused the Darvall Street Bridge to develop a list of several inches in a southerly direction and Darvall Street, west of Denison Street, sank two feet and damaged the water main leading to the island. Twelve months after the "crush" in the colliery's workings, the Wickham Bullock Island Coal Co. forwarded council a cheque for restoration of the depression in Darvall Street."

Figure 2-5 1910 map showing Thorsby Creek and Darvall Street bridge

Fourteen days later, on the 24th September 1896, the Sydney Morning Herald report: "an extensive fall of roof which took place the previous day in the abandoned workings of the 4th, 5th and 6th right hand districts. Since then further falls of the roof have taken place in those districts. Despite these districts being overlaid by tidal waters, there is not the least sign of additional water having release by these falls"

The abovementioned 4th, 5th and 6th right hand districts are well south of the subject site and Darvall Street bridge and underlie Thorsby Creek.

No mention of subsidence or "crushes" in the left hand district or along the main development headings was found in the newspaper articles referenced.

1901 and 1902

Coulin (1995) reports that: "On 3 October 1901, there was a subsidence in Hargrave Street and a burst water main. Many houses were affected by minor inconveniences but the council chambers suffered serious cracking. Subsidence damage to the chambers, Young and Hargrave Streets. Once again the subsidence had occurred in workings with only six-yard pillars. Subsidence's occurred again on 9 and 10 February 1902. Broken mains flooded the corner of Young and Hargrave Streets and some houses were damaged. Further settlement caused considerable damage to the council chambers and the nearby tennis court became a total wreck. Council commenced restoring Hargrave Street in August 1903. The extent of the settlement after the subsidence was such that up to 3 feet 9 inches of material was necessary in places to restore the street to its original level."

3. Pillar stability and subsidence

3.1 Introduction

Some surrounding areas of the mine workings are known to have failed. That is, the pillars have crushed and surface ground subsidence has resulted as discussed in Section 2.3.2. We do not know if the workings beneath the site and immediate surrounds have failed. As such, for this assessment, we assume that they have not and could therefore do so in the future.

The likelihood of future widespread pillar failure and hence subsidence is dependent on many factors. Of primary relevance are:

- The vertical load (stress) on the pillars from the weight of the overlying soil and rock
- The ability of the overburden rock (in this case about 20 to 30 m thick) to distribute this load amongst the available supporting pillars
- The strength of the supporting pillars, or more correctly: the stress-strain behaviour of the pillars under sustained load

The first two factors are easier to estimate than the third. The strength of a pillar is itself a function of many factors but primarily it is associated with the width of the pillar, its relative height and the strength of the coal forming it. With an estimate of average pillar stress and pillar strength, a factor of safety (FoS) can be calculated. Here, failure is when the pillar begins to deform plastically rather than its peak strength.

A statistical analysis drawing on a database of failed and unfailed pillars has been published by the University of NSW (Galvin *et al* 1998) to derive a likelihood of failure. The procedure is intended for the design of pillars in new mines and is limited to areas of pillars that are not effected by such things as faults and is not recommended for pillars with width to height ratios (w/h) less than 2. Despite these limitations, and largely due to a lack of convenient alternative, the UNSW rectangular pillar formula (Galvin *ibid*) is commonly used.

For workings with irregular layouts and more complex geological conditions such as the subject site, numerical analysis can be used to both assess pillar factor of safety and the consequence (subsidence) of pillar failure. We note that such calculations are not linked to the UNSW correlation of FoS to likelihood of failure and attempts to make such correlations can be misleading. However, by any method, the calculated factor of safety of the pillars is expected to be low when a mining section of 'tops and bottoms' is used and the weakening effects of the fault on pillars considered. More sophisticated methods to calculate pillar factor of safety are not considered warranted given the uncertainties of the mine layout.

If the pillars in this area have not already failed they may do so in the future. Calculations can be undertaken to estimate the subsidence (i.e. settlement, strain, tilt) that might result and buildings can be designed to accommodate these effects to a limited degree and at a cost. Alternatively, or in conjunction with designing buildings to accommodate subsidence, the mine workings can be significantly filled with cementitious grout to both increase pillar factor of safety to a degree by providing pillar rib support, but primarily to reduce the magnitude of subsidence to more manageable levels by increasing their post-failure stiffness.

The prediction of subsidence is complex and requires knowledge of the mine workings, the geomechanical behaviour of the overburden soil and rock, and a hypothetic scenario/s to analyse. A highly useful resource are descriptions of past nearby subsidence events as discussed in Section 2.3.2. These accounts can be used to calibrate or 'reality check' subsidence calculations. This is discussed further in Section 3.3.

3.2 Pillar stability by UNSW rectangular pillar formula

The criteria required by SA NSW (2018) relies on the UNSW rectangular pillar formula.

Pillar stability calculations for typical 'average' pillars beneath the site have been made and are presented in Table 3-1. These address six cases, all considering pillars 10 yards (9.1 m) and 20 yards (18.2 m) in length to give a range of stresses and factors of safety for each case.

Case 1 represents the likely, worst credible case during mining (Case 1b) and the situation now (Case 1a). Case 2 represents a likely case where only bottoms of coal were taken (i.e. mining height 1.8 m). Case 3 reflects SA NSW requirements with respect to B1 and B2 building categories. That is:

- For B1 buildings: pillar height is full seam thickness and workings are dewatered
- For B2 buildings: as for B1 but also the pillar width is reduced by 0.5 m

For flooded workings, an effective stress at the top of the coal seam of 0.84 MPa has been used. For dewatered workings an effective stress of 1.5 MPa is used. This is based on 45 m of soil at 2 t/m³ and 24 m of rock at 2.5 t/m³. Acceleration due to gravity of $g = 10 \text{ m/s}^2$ is used for consistency with the UNSW methodology.

Case	Pillar width (m)	Pillar height (m)	Pillar width to height ratio	Bord width (m)	Average pillar stress (MPa)	Factor of Safety (FoS)
Case 1a tops and bottoms flooded 	55	6.0	0.9	55	2.7 to 2.2	1.7 to 2.1
Case 1b • tops and bottoms • dewatered	5.5	6.0	0.9	5.5	4.8 to 3.9	0.95 to 1.2
Case 2a bottoms only flooded 	5 5	1.8	3.1	55	2.7 to 2.2	12.5 to 12.6
Case 2b bottoms only dewatered 	5.5	1.0	5.1	0.0	4.8 to 3.9	2.6 to 3.2
Case 3a – for B1 full seam height dewatered 	5.5		0.9		4.8 to 3.9	0.95 to 1.2
Case 3b – for B2 • full seam height • dewatered • reduced pillar width	5.0	6.0	0.8	5.5	5.3 to 4.3	0.82 to 1.0

Table 3-1 Summary of UNSW pillar stability calculations

As discussed in Section 3.1, the UNSW pillar design methodology (Galvin *ibid*) provides a correlation of factor of safety to likelihood of failure based on statistical analysis of a database of failed and unfailed pillars. This is shown in the below table. Caution is needed in using this as it is questionable that the types of pillars that have been assessed (being slender and fault effected) are within the empirical database used to derive this correlation.

Likelihood of Failure	Factor of Safety
8 in 10	0.87
5 in 10	1.00
1 in 10	1.22
5 in 100	1.30
2 in 100	1.38
1 in 100	1.44
1 in 1000	1.63
1 in 10000	1.79
1 in 100000	1.95
1 in 1000000	2.11

Table 3-2 Factor of safety to likelihood of failure correlation (Galvin *ibid*)

3.3 Surface subsidence

3.3.1 Background on systematic assessment of tilt, curvature and strain

Tilt

Tilt is the first derivative of the vertical subsidence profile, or the rate of change of vertical subsidence. It is calculated as the change in vertical subsidence between two points divided by the horizontal distance between those two points. The base length is typically the standard mine survey peg spacing of 1/20th the depth of mining.

Tilt should primarily be considered in the context of surface infrastructure serviceability. For example, providing generous falls for roof gutters and wet area floors.

Curvature

Curvature is the second derivative of subsidence, or the rate of change of tilt. It is calculated as the change in tilt between two adjacent sections (bays) of the tilt profile divided by the average length of those sections. The radius of curvature (R) is expressed as follows.

 $R = \frac{\text{sum of the lengths of successive bays}}{2 x \text{ differential tilt between them}}$

Building length (L) should take differential deflection (Δ) into consideration through review of the design radius of curvature (R). The following from Burland and Wroth (1974) provides the mathematical relationship:

$$\Delta = \frac{L^2}{8R}$$

For example, a 10 km radius of curvature and 50 m long building results in differential deflection of 31 mm.

Consideration of curvature is also relevant in the context of ensuring adequate fall (post subsidence) for drainage elements such as stormwater drains and gravity sewers.

Strain

Strain is the first derivative of horizontal movement, or the rate of change of horizontal movement. It is calculated as the change in horizontal length of a section of the subsidence profile divided by the initial horizontal length of that section.

 $Strain = \frac{\text{new horizontal distance - original horizontal distance}}{\text{original horizontal distance between the pegs}}$

By convention, tensile strains are positive and compressive strains negative.

3.3.2 Estimated subsidence

Descriptions of nearby subsidence events in Section 2.3.2 indicate up to about 2 feet (\sim 0.6 m) of subsidence occurred at Darvall Street, south west of the site where tops and bottoms were taken in every bord. About 930 m north at Hargreave Street, 3 feet 9 inches (\sim 1.1 m) of subsidence was reported to occur in 1901/1902. This area is shown on RT579 and is also where tops and bottoms were taken in every bord.

Geotechnical assessments by Coffey Geotechnics at Cottage Creek in 2009 (referenced in Coffey, 2019) about 650 m to the south, concluded that mine roof convergences of between 0.1 m and 1.65 m had occurred. These 'crushes' would have translated to surface subsidence to some lesser magnitude as a function of the overburden characteristics.

At the subject site, there is about 20 to 30 m of rock overlying the mine workings and above this alluvial clays and sands. This is likely to be similar to conditions at Darvall Street. However, the mine record tracing shows tops and bottoms were only taken in every second or third bord beneath the site, reducing the amount of coal extracted and hence subsidence. However, many of the pillars beneath the site are shorter, having the opposite effect. Additionally, the fault passing beneath the site may locally increase roof convergence although the effects wouldn't be reflected on the ground surface due to the 'smoothing' effect of the overlying soils - in particular, the thick clay unit in the base of the alluvial sequence.

The behaviour of the soil in response to mine roof convergence would dictate the profile of the surface subsidence. That is, the ground strains and curvature of the trough. This profile shape can be estimated using soil mechanics theory employed in estimating surface subsidence profiles resulting from volume loss in tunnels.

The subsidence profile shown in Figure 3-2 has been developed by assuming the overburden rock has no 'smoothing' effect and that a stepped roof convergence " Δ " occurs. This is a conservative but valid assumption given the presence of the fault. The effects of this stepped convergence is translated through the overlying soils based on soil mechanics theory as per the method of Mair *et al* (1993). Here, the value Δ is adjusted to result in a maximum surface subsidence S_{max} of a nominal 0.6 m (about 2 feet), to reasonably match historical records.

The assumed subsidence profile is two-dimensional. That is, the convergence Δ is assumed to have infinite length (into and out of the page).

The above modelled scenario represents a 'worst credible case' event where full convergence occurs on one side of a 'goaf edge' or fault vertical plane but not on the other side. In reality, it is likely that some crushing of pillars on both sides of this plane would occur due to abutment loading conditions. This would have the effect of spreading the subsidence trough over a slightly larger area and hence reducing the maximum strains, tilts and curvatures.

A key input parameter for the subsidence profile calculation in Mair *et al* (1993) is the parameter 'K' which changes the maximum extent of the trough and so affects strain, tilt and curvature. The larger the K value, the wider the trough and hence lesser the strain, tilt and curvatures.

While the concept is the same as 'angle of draw' (β) in mine subsidence with a subsidence limit of 20 mm adopted, the behaviour of soil is different to the rock that the commonly adopted 26.5° (1H:2V) angle of draw is based upon. K is based on soil mechanics and is a function of soil type and depth (derived originally through semi-empirical methods). K values for clays are typically between 0.4 and 0.7 and for sand about 0.3.

For this analysis we have used:

- K of 0.3 for sand and 0.6 for clay, weighted average of 0.5.
- Δ of 1.26 m to result in an S_{max} of 0.6 m.

The resulting profile and associated strains, curvature and tilts are shown below.

Figure 3-3 Resultant strain and tilt profile

 S_{max} is defined at x = 0 m in the above figures. The point of inflection is at x = - 25 m and is where horizontal strain is zero and tilt is maximum. The limit of subsidence is at x = - 65 m where S = 20 mm.

The maximum subsidence parameters from the above analysis are:

- Maximum subsidence S_{max} : 's' adjusted to result in a nominal 0.6 m
- Maximum tensile strain E+ = 5.4 mm/m (over a 10 m bay length)
- Maximum compressive strain E- = 12.1 mm/m (over a 10 m bay length)
- Maximum tilt T = 15.4 mm/m (over a 10 m bay length)
- Minimum radius of curvature = 0.1 km

4. SA NSW Policy and development options

4.1 Introduction

Development options being considered include on-ground car parking and light industrial or commercial buildings between one and three storeys as follows:

Option 1 Two buildings: one of 3 storeys and the other 2 storeys with on-ground parking
 Option 2 Two buildings: one of 3 storeys and the other 2 storeys with undercroft and on-ground parking
 Option 3 Two buildings: both 2 storeys with on-ground parking
 Option 4 Three buildings: all 2 storeys with on-ground parking

For non-residential development such as this, SA NSW assessment will be based on their Development Application – Merit Assessment Policy (SA NSW. 2018). We understand this document is currently under review by SA NSW.

4.2 SA NSW Merit Assessment Policy

The Merit Assessment Policy classifies proposed building developments into three categories, shown in the below table. The four proposed development options are expected to fall within either the B1 or B2 categories, provided the construction cost is less than five million.

Table 4-1 SA NSW Building Categories

SA NSW category	General Classification of Building type
B1	 up to and including 3 storeys (including rooftop access) < 50 m maximum plan footprint dimension no basement no load bearing masonry construction up to and equal to \$3 M construction cost
B2	 up to and including 4 storeys (including basements and rooftop access); or Between \$3 M to \$5 M construction cost; or > 50 m in maximum plan footprint dimension
В3	 greater than 4 storeys (including basements and rooftop access); or > 100 m maximum plan footprint dimension Greater than \$5 M construction cost; or Use - Hospital Wards, Operating theatres, critical public infrastructure, Public Buildings with high trafficability (i.e. school halls etc.)

The SA NSW assessment requirements for each building category are then a function of the perceived level of geotechnical uncertainty as either low, medium or high, based on the level of confidence and understanding of the following weighted factors.

- Geological environment (R1) weighting 2
- Level of geotechnical investigation (R2) weighting 2
- Type of coal mine plans and records (R3) weighting 3
- Method used to assess stability and impact (R4) weighting 3

An uncertainty factor (UF) is then calculated by summing the products of R weightings and their uncertainty value (U) and finally subtracting 10 as follows:

Where:

- Low uncertainty, U = 1
- Moderate uncertainty, U = 2
- High uncertainty, U = 3

Table C2 of the policy provides the reference descriptions for uncertainty categories.

For the subject site, our assessment of the SA NSW uncertainty factor (UF) is 17 as shown in the table below.

	Table 4-2	SA NSW	Uncertainty	Factor	calculation
--	-----------	---------------	-------------	--------	-------------

Factor	Weighting	Uncertainty	Product	Comment
R1	2	3	6	Fault present
R2	2	3	6	No boreholes within 50 m
R3	3	3	9	Hand working, irregular
R4	3	2	6	Conservative UNSW inputs
uncertainty factor (UF)		17	Product sum less 10	

An uncertainty factor greater than 10 is "High Uncertainty". From 6 to 10 is Moderate Uncertainty.

Table C3 of the Merit Assessment Policy sets out SA NSW's "Estimated Conditions of Approval for Trough Subsidence Risk". Different conditions are given depending on whether the assessed pillar (panel) factor of safety (FoS) and pillar width to height ratio is less than or greater than nominated criteria. For High Uncertainty cases such as this, the nominated criteria are:

- Pillar FoS
 2.1 for B1 and B2 buildings
- Pillar width to height ratio 4 for B1, and 5 for B2 buildings.

On both of these criteria, the subject site exceeds the criteria and as such the more onerous approval conditions apply as set out in Table C3 of the Merit Assessment Policy.

For B3 buildings, High Uncertainty is not acceptable. If the uncertainty factor (UF) could be reduced to 6 to 10 (i.e. Moderate Uncertainty) through geotechnical investigation, the nominated criteria for B3 buildings would be:

- Pillar FoS
 2.1 for B3 buildings (if uncertainty reduced to moderate)
- Pillar width to height ratio 4 for B3 buildings (if uncertainty reduced to moderate.)

Again, the more onerous approval conditions apply.

5. Summary and conclusions

5.1 Summary

From our current understanding, mine convergence (crush) and trough subsidence has not occurred beneath the site and thus could do so in the future. The pillar factor of safety is not sufficiently high or certain to conclude that the risk associated with pillar failure is tolerable for either B1, B2 or B3 building categories.

In the absence of data (new historical information and / or borehole drilling at the site) indicating the mine workings have fully crushed, the SA NSW Merit Assessment Policy requires that buildings be designed to accommodate design subsidence parameters.

An estimate of subsidence effects (strain, tilt and curvature) resulting from a nominal surface subsidence (S_{max}) of 0.6 m based on historic subsidence in the area, resulted in the following:

- Maximum tensile strain E+ = 5.4 mm/m
- Maximum compressive strain E- = 12.1 mm/m
- Maximum tilt T = 15.4 mm/m
- Minimum radius of curvature = 0.1 km

These exceed the SA NSW values for both B1 and B2 building categories set out in Table C3 of the Merit Assessment Policy, triggering the additional "structurally safe to occupants" design requirements.

The anticipated SA NSW design requirements are summarised in Table 5-1. Reference must also be made to Table C3 of the Merit Assessment Policy for additional approval requirements.

Table 5-1 SA NSW subsidence design parameters

SA NSW Doliou requirements Table C2	Relevant design parameters				
SA NSW Policy requirements Table CS	Category B1	Category B2			
Structure must be designed to be "safe, serviceable and any damage from mine subsidence shall be limited to 'slight' in accordance with AS2870 (Damage Classification), and readily repairable".	 ± 3 mm/m strain 4 mm/m tilt 5 km radius of curvature 	 ± 5 mm/m strain 7 mm/m tilt 2 km radius of curvature 			
AND					
Structure must both satisfy the above and in addition remain structurally safe to occupants taking into account additional estimated subsidence impact.	 + 5.4 mm/m horizontal strain (tensile) - 12.1 mm/m horizontal strain (compressive) 15.4 mm/m tilt 0.1 km radius of curvature 				
Defense much also be made to Table C2 "Estimated Canditions of Approval for Traugh					

Reference must also be made to Table C3 "Estimated Conditions of Approval for Trough Subsidence Risk" of the Merit Assessment Policy for additional approval requirements.

For Category B3, High Uncertainty is not acceptable. Geotechnical investigation would be required. If investigation resulted in a reduction to Moderate Uncertainty, the relevant requirements as per Table C3 of the Merit Assessment Policy would be:

"Structure must be designed to be "safe, serviceable and readily repairable" under the predicted subsidence impact parameters". AND

"If estimated subsidence impact greater than specified, subsidence impact must be either eliminated or mitigated by a suitable means such as the emplacement of grout into the mine workings, or another suitable engineered mitigation measure put forward for SA NSW acceptance."

We interpret the above to mean that if Category B3 buildings can not be designed to be *"safe, serviceable and readily repairable"* for the predicted subsidence, some other means of mitigation (such as grouting) would be needed.

If new information was sourced, demonstrating that the mine workings beneath the site have fully crushed, SA NSW may still require design for some lesser subsidence parameters to address the possibility of residual subsidence.

5.2 Conclusions

There are potential structural solutions available for B1 and B2 building categories. The viability of these solutions are dependent on the types of structures and their sizes and should be assessed by a qualified Structural Engineer with experience in design of similar buildings to meet mine subsidence requirements.

Geotechnical investigation may find that the mine workings have already collapsed. In that case, reduced subsidence design parameters are likely to be justifiable. However, we think it is unlikely that the workings here have collapsed on the information currently in hand. Additionally, the number of boreholes required to demonstrate that full collapse has occurred is, pragmatically, unknown and almost certainly more than two.

Grouting of the mine workings could be undertaken to reduce the subsidence design parameters for B1 and B2 building categories and thereby reduce the building constraints and structural costs associated with design for subsidence.

For the B3 building category, geotechnical investigation is required. If this investigation found that the mine workings have already fully collapsed, the buildings would need to be designed to accommodate nominal residual subsidence parameters. If the workings have not collapsed, grouting would be required as well as design for some nominal residual subsidence parameters.

6. Limitations

This report has been prepared by GHD for Port of Newcastle and may only be used and relied on by Port of Newcastle for the purpose agreed between GHD and Port of Newcastle as set out in Section 1 of this report.

GHD otherwise disclaims responsibility to any person other than Port of Newcastle arising in connection with this report. GHD also excludes implied warranties and conditions, to the extent legally permissible.

The services undertaken by GHD in connection with preparing this report were limited to those specifically detailed in the report and are subject to the scope limitations set out in the report.

The opinions, conclusions and any recommendations in this report are based on conditions encountered and information reviewed at the date of preparation of the report. GHD has no responsibility or obligation to update this report to account for events or changes occurring subsequent to the date that the report was prepared.

Specifically, this Report does not take into account the effects, implications and consequences of or responses to COVID-19, which is a highly dynamic situation and rapidly changing. These effects, implications, consequences of and responses to COVID-19 may have a material effect on the opinions, conclusions, recommendations, assumptions, qualifications and limitations in this Report, and the entire Report must be re-examined and revisited in light of COVID-19. Where this Report is relied on or used without obtaining this further advice from GHD, to the maximum extent permitted by law, GHD disclaims all liability and responsibility to any person in connection with, arising from or in respect of this Report whether such liability arises in contract, tort (including negligence) or under statute.

Any excerpts of original mine survey plans or record tracings and any data derived from such original mine survey plans or record tracings must not be relied upon in any way by any person, including (without limitation) for the accuracy or completeness of mine workings, and are intended for indicative purposes only. The Department of Planning is not responsible or liable to any person for any loss or liability arising out of or in connection with use of any such excerpts or derived data.

7. **References**

Anonymous correspondent (1896). *Wickham and Bullock Island Colliery – Fears of a Creep.* The Sydney Morning Herald, August 25, 1896.

Statement by Colliery Manager (1896). *Wickham and Bullock Island Colliery – Cracks in the Earth Above.* Newcastle Morning Herald and Miners' Advocate, August 25, 1896.

Anonymous correspondent (1896). *Wickham and Bullock Island Colliery – The crush extending.* Newcastle Morning Herald and Miners' Advocate, August 31, 1896.

Anonymous correspondent (1896). *Wickham and Bullock Island Colliery – Another examination of the workings.* Newcastle Morning Herald and Miners' Advocate, September 1, 1896.

Inspector Humble's Report (1896). *Wickham and Bullock Island Colliery – The recent fall.* Newcastle Morning Herald and Miners' Advocate, September 2, 1896.

Anonymous correspondent (1896). *Wickham and Bullock Island Colliery – The Workings Declared to be Safe.* Newcastle Morning Herald and Miners' Advocate, September 7 1896.

Anonymous correspondent (1896). *Wickham and Bullock Island Colliery – The Pit Idle.* Newcastle Morning Herald and Miners' Advocate, September 10 1896.

Anonymous correspondent (1896). *Wickham and Bullock Island Colliery – Another Fall of Roof – Further Cessation of Work*. The Sydney Morning Herald, September 10, 1896.

Anonymous correspondent (1896). *Wickham and Bullock Island Colliery – The Workings Declared to be Safe.* Newcastle Morning Herald and Miners' Advocate, September 22 1896.

Burland J.B. and Wroth C.P. (1974). *Allowable and differential settlements of structures, including damage and soil-structure interaction.* Proceedings of settlement of structures conference. British Geological Society. ISBN 0 7273 1901 9.

Coffey Services Australia (2019). Letter to Horizon Newcastle Pty Ltd. Proposed Lee 5 Development – 45 Honeysuckle Drive Newcastle – Mine subsidence deskstudy. Ref. 754-NTLGE223250-2-AB.Rev1, 24 April 2019.

Colquhoun G.P., Hughes K.S., Deyssing L., Ballard J.C., Phillips G., Troedson A.L., Folkes C.B. & Fitzherbert J.A. (2019). *New South Wales Seamless Geology dataset, version 1.1 (Digital Dataset)*, Geological Survey of New South Wales, NSW Department of Planning and Environment, Maitland.

Coulin, Edward (Ted) (undated). 1983-1995 History of Carrington - by (transcript)

Delta Collieries (undated). *Sheet 4 M12137 R13121370 / D100033990*, NSW Department of Planning Industry and Environment.

Department of Mines NSW (1896 to 1906) *Annual Report of the Department of Mines, NSW*, Sydney.

Galvin, JM, Hebblewhite, BK, Salamon, MDG and Lin, B (1998). *Establishing the Strength of Rectangular and Irregular Pillars*, ACARP Research Project No C5024, December 1998. UNSW Pillar Design Methodology.

Kingswell, G. H. (1890). The Coal Mines of Newcastle NSW - Their Rise and Progress.

Lc Cpl A. Barrett (1910). Map of the Country around Newcastle N.S.W. Royal Engineers, 30 November 1910.

Mair, R.J., Taylor, R. N. & Bracegirdle, A. (1993). *Subsurface settlement profiles above tunnels in clays.* Geotechnique 43, No.2, 315-320.

NSW Royal Commission on Collieries (1886). *Third report on the collieries adjacent to Ferndale*, Sydney.

Public Works, Department Civil Engineering Division (1984). *Geotechnical Investigation for Proposed New Vertical Silo Block at Carrington (Newcastle) for the Grain Handling Authority.*

Subsidence Advisory NSW (2018). *Development Application – Merit Assessment Policy*, https://www.subsidenceadvisory.nsw.gov.au/sites/default/files/uploads/merit_policy-may_2018.pdf.

Wickham and Bullock Island Colliery (1906). *The Wickham and Bullock Island Colliery Workings, scale one chain to an inch*, RT579 D100017000.

Appendices

GHD | Report for Port of Newcastle Operations Pty Ltd - 46 Fitzroy Street, Carrington, 12527619

Appendix A – Figures

Figure 1: Site location plan Figure 2: M12137 Sheet 4 Delta Colliery plan extract Figure 3: Record Tracing RT579 extract

1 ghdnefighd/AUNewcastle/Projects/22/12527619/GIS/Maps/12527619_FitzroyStMineSubsidenceAndContamination/12527619_PoN_MineSubsidenceAssessment_A.aprx/12527619_MSA00 Print date: 08 May 2020 - 16:51

Data source: LPI: DCDB, 2017. public_NSW_Imagery: . Created by: kschroder-turner

Site Boundary

Any excerpts of original mine survey plans or record tracings and any data derived from such original mine survey plans or record tracings must not be relied upon in any way by any person, including (without limitation) for the accuracy or completeness of mine workings, and are intended for indicative purposes only. The Department of Planning is not responsible or liable to any person for any loss or liability arising out of or in connection with use of any such excerpts or derived data.

Map Projection: Transverse Mercator Horizontal Datum: GDA 1994 Grid: GDA 1994 MGA Zone 56

Port of Newcastle Operations Pty Ltd PoN - 46 Fitzroy St Carrington Mine Subsidence Assessment

Project No. **12527619** Revision No. **A** Date **05/05/2020**

FIGURE 2

M12137 Sheet 4 Delta Colliery plan extract

Nghonet/ghd/AUINewcastle/Projects/221/2527619/GISIMaps/12527619_FitzroySMineSubsidenceAndContamination/12527619_Pon_MineSubsidenceAssessment_A.aprx/12527619_MSA002_MineWorkings_M12137_A Print date: 08 May 2020 - 16.04

Data source: LPI: DCDB/DTDB, 2017. De Witt Consulting: M12137.R13121370.Plan of workings - sheet 4 (pt 1) of 13. 2chinch.jpg.. Created by: kschroder-turner

Site Boundary

Legend

Disclaimer

Any excerpts of original mine survey plans or record tracings and any data derived from such original mine survey plans or record tracings must not be relied upon in any way by any person, including (without limitation) for the accuracy or completeness of mine workings, and are intended for indicative purposes only. The Department of Planning is not responsible or liable to any person for any loss or liability arising out of or in connection with use of any such excerpts or derived data.

Port of Newcastle Operations Pty Ltd PoN - 46 Fitzroy St Carrington Mine Subsidence Assessment

Project No. 12527619 Revision No. A Date 08/05/2020

Record Tracing RT579 extract

FIGURE 3

Deta source: LPI: DCDB/DTDB, 2017. De Witt Consulting: RT0579.R10000566.Plan of workings- sheet 1 (pt 1) of 4. 1ch1inch.jpg/RT0579.R10000566.Plan of workings- sheet 2 (pt 1) of 4. 1ch1inch.jpg. Created by: kschroder-turner

GHD

Level 3 GHD Tower 24 Honeysuckle Drive Newcastle NSW 2300 PO BOX 5403 Hunter Region Mail Centre T: 61 2 4979 9999 F: 61 2 9475 0725 E: ntlmail@ghd.com

© GHD 2020

This document is and shall remain the property of GHD. The document may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited.

12527619-20733-

32/https://projectsportal.ghd.com/sites/sp01_01/pon46fitzroystcarrin/ProjectDocs/12527619-REP_Mine Subsidence Assessment.docx

Document Status

Revision	Author	Reviewer		Approved for Issue		
		Name	Signature	Name	Signature	Date
0	S.Mackenzie	A.Leventhal	on file	S.Mackenzie	Sam Mackenzie	21/05/20

www.ghd.com

Appendix H – Correspondence with Subsidence Advisory NSW

MEETING MINUTES – EBA20-00035 46 Fitzroy Street, Carrington 4 May 2020

Time:	10:00 AM – 11:00 AM
Venue:	Via Zoom
Attendees:	Shane McDonald SANSW Risk Engineer (SM), Kieran Black SANSW Technical Manager (KB), Sam Mackenzie GHD (SMa), Greg Williams (GW) Monteath & Powys, David Morris (DM) Port of Newcastle, Andrew Phillips Monteath & Powys (AP), Andrew Stone (AS) Port of Newcastle
Minutes:	Jo Delarue SANSW Admin Officer (JD)

NO	DISCUSSION/ACTION	OWNER
1.0	INTRODUCTION	
	Introductions via Zoom	
2.0	DISCUSSION	
	SMa advised that he hasn't undertaken any pillar calculations or numerical modelling for this site, he is in the process of completing a desktop study. They are currently exploring feasibility of investigation before they can progress. No creeps to their knowledge for this area, however he is looking into royal commission information.	SMa
	SA NSW indicated that there could be a crush event mapped to the South of the site – will look into the records and get back to SMa as it could be approx. 60m away.	SM
	Amended architectural plans were raised on the screen and GW provided a summary of the proposal to the group.	GW
	Changes they have proposed with design include; no basement carparking, reduced to 3 storeys for Building A and 2 storeys for Building B. Want to get SA NSW's thoughts on this design and what conditions may be imposed?	GW
	SA NSW indicated that conditions would depend on whether the buildings would fall within a B2 or B3 category, KB shared the SA NSW Merit Policy on the screen and provided an explanation of Table C1.	КВ
	GW considers the buildings to fall within the requirements for a B2 structure, however they are awaiting the costs from the quantity surveyor. He clarified the length in relation to the 50m footprint and SA NSW responded that a B2 would include up to a 100m footprint.	GW & SM
	SA NSW added that cost was a factor in determining whether the buildings fall within B2 or B3, and that the development would be assessed as a whole if both buildings are lodged as the one application which includes the combined cost.	КВ
	GW indicated that they could lodged them as 2 separate applications with SA NSW so that they comply with a B2 requirement. SMa asked if the cost factor was flexible relating to the building	GW & SMa

117 Bull Street, Newcastle West NSW 2302 Tel 02 4908 4300 | www.subsidenceadvisory.nsw.gov.au 24 Hour Emergency Service: Free Call 1800 248 083 ABN 81 913 830 179

NO	DISCUSSION/ACTION	OWNER			
	categorisation.				
	SA NSW responded that decisions would be the driven by the policy so it cost wouldn't be flexible.	KB			
	Discussion between GW, SMa & SA NSW regarding requirements for possible investigation for the site, questions were raised regarding the likelihood of SA NSW asking for drilling on the site.	GW, SMa & KB			
	SA NSW indicated they need to review the Desktop Study as a first step to understand the subsidence risk. Once the application is submitted with the desktop study SA NSW can provide comment.				
	SMa & AS indicated that they are looking to gain a better understanding of what SA NSW would require regarding further investigation so they can make a reasonably informed decision as to what could be developed for this site.	SMa & AS			
	SA NSW shared the Merit Assessment Policy on screen to provide an indication of conditions that may be applicable for the proposal. Based on the uncertainty factor there are different requirements. As the calculations haven't been completed for the site the parameters are not clear at this stage. The best thing at this stage is to undertake the desktop assessment and then run it through the merit policy/submit to SA NSW with the plans for assessment.	КВ			
	Brief discussion between SMa, GW and KB regarding requirements of possible drilling investigation and if historical data/documents for the site would be relevant.	SMa, GW &			
	SANSW indicated that the first step needs to be the desktop study, prior to that we can't provide details on what conditions or further investigations may be required.	KB			
	GW indicated that the desktop won't be ready for some specific dates the project needs to meet regarding proposed options for the development.	GW			
	SA NSW indicated that if the site was grouted and the risk was removed there won't be any restrictions on what can be built.	КВ			
	GW replied that grouting wouldn't be a financially viable option, so they want to design something that will be allowable on the site as it is. In summary, SMc needs to provide the desktop study. We will be proposing either a B1 or B2 building for this site and we will have a QS report to cover the costings.	GW			
	SA NSW added that the policy indicates that the building has to be 'safe' (under B2) in relation to the estimated worst case parameters where they exceed nominal parameters as defined in the policy.	SM			
	AS queried if they can avoid submitting the buildings separately relating to the combined cost for the categorisation (B2/B3)2	AS			
	SA NSW responded that we have to go by the policy, so no if they are submitted together they would be assessed as a whole development including the cost	KB			
3.0	CONCLUSION SA NSW suggested the desktop study is finalised, then lodged as a formal enquiry or application so a response can be provided.	КВ			

GHD

Level 3, GHD Tower 24 Honeysuckle Drive NEWCASTLE NSW 2300 T: 61 2 4979 9999 F: 61 2 9475 0725 E: ntlmail@ghd.com

© GHD 2021

This document is and shall remain the property of GHD. The document may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited.

12545790-62329-

2/https://projectsportal.ghd.com/sites/pp01_05/46fitzroystreet65den/ProjectDocs/12545790-REP_Geotechnical and mine subsidence report.docx

Document Status

Revision	Author	Reviewer		Approved for Issue		
		Name	Signature	Name	Signature	Date
0	S Mackenzie	A Leventhal	*A Leventhal	S Mackenzie	Sam Mackenzie	29/04/2021

www.ghd.com

